Download presentation

Presentation is loading. Please wait.

Published byCedric Manor Modified about 1 year ago

1
Frégier Families of Conics Michael Woltermann Washington and Jefferson College Washington, PA 15301 JMM Meeting San Diego, CA, Jan., 2013

2
Frégier’s Theorem If from a point P on a conic any two perpendicular lines are drawn cutting the conic in points Q and R, then line QR meets the normal at P at a fixed point P’.

3
Frégier’s Theorem Modern proofs involve things like ◦ Involutive homographies ◦ Good paramatrizations ◦ Polar correspondence An analytic proof (for an ellipse) by John Casey (1893) finds equation of lines in terms of eccentric angles. An analytic proof for any conic section by W.J.Johnston (1893) is fairly straightforward.

4
A lemma

5
Johnston’s Proof

7
How to Find P’ Let P 0 be the point of intersection (other than P) of the conic c with the line through P parallel to the directrix. P’ is the intersection of the normal line at P with the line through P 0 and the center of c. (The center of a parabola is the ideal point on its axis.)

8
For example

9
What is the locus of P’?

10
The locus of P’

11
Some Properties of F (c) c and F (c) have the same eccentricity. c and F (c) have the same center. If c is a parabola, the lengths of the latus rectum of both c and F (c) are the same. If c is a hyperbola c and F (c) have the same asymptotes. If c and d are conjugate hyperbolas, so are F (c) and F (d).

12
Iterating F

13
Finding P from P’ Let c’ be a conic, P’ be on c’, O the center of c’. Reflect P’ about the major axis of c’ to point P’’. Construct normal to c’ at P’ Reflect the normal about the line through P’ parallel to the directrix to line m. P is the intersection of m and line OP’’.

15
Why? An analytic proof is easy. Show that if P’ is the Frégier point of P relative to a conic c, then the construction above takes P’ back to P. Consider central conics and parabolas separately.

16
Frégier Families of Conics

17
References Akopyan, A.V. and Zaslavsky, A.A.; Geometry of Conics; AMS, 2007. Casey, John; A Treatise on the analytical geometry of the point, line, circle, and conic sections; Dublin U. Press, 1893. Frégier involution by orthogonals from a conic-point; http://www.math.uoc.gr/http://www.math.uoc.gr/ Johnston, W.J.; An Elementary Treatise on Analytical Geometry; Clarendon Press, 1893 Wells, D.; The Penguin Dictionary of Curious and Interesting Geometry; Penguin, 1991.

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google