Presentation is loading. Please wait.

Presentation is loading. Please wait.

Review of the Ecology Unit Post Falls High School Biology.

Similar presentations

Presentation on theme: "Review of the Ecology Unit Post Falls High School Biology."— Presentation transcript:

1 Review of the Ecology Unit Post Falls High School Biology

2 What is Ecology? The

3  Ecology-  the study of interactions between –organisms and organisms –organisms and their environment

4 Where do we fit in? (What is our environment?) The Biosphere!

5 Factors that effect us: 1. Abiotic Factors Wind/Air currents Moisture Soil Light Temperature

6  A- stands for non  Bio- stands for living  Abiotic Factors- nonliving factors

7 2. Biotic Factors:

8  Biotic- Living factors

9 What is the organization of Ecological Study? Population Community Ecosystem Biosphere Organism

10 Levels of Organization  Individual- one organism (living)  Ex a moose

11 Levels of Organization  Population- groups of individuals that belong to the species and live in the same area. (living-living same species)  Ex many moose

12 Levels of Organization  Community- groups of different populations (more than one population or different groups of species) Ex many groups of moose beavers, trees, grass (all living)

13 Levels of Organization  Ecosystem- all organisms in a particular area along with the nonliving. (living and nonliving) Ex many groups of moose beavers, trees, grass, rocks, water, mountains

14 Levels of Organization  Biome- group of ecosystems that have the same climate and similar dominant communities  Biomes: tropical rain forest, tropical dry forest, tropical savannah, temperate grassland, desert, temperate woodland and shrubland, temperate forest, northwestern coniferous forest, boreal forest (taiga), tundra, mountains and ice caps

15 Levels of Organization  Biosphere- all of the planet where life exhists, includes land, water, and, air  Life extends 8 km up and 11 km below the surface

16 IN AN ECOSYSTEM: Organisms live in a Habitat Organisms fit into a Niche of the environment

17 Habitat vs. Niche  Habitat- an area where an organism lives  Niche- an organisms role in its environment –The Long Version  full range of physical and biological conditions in which an organism lives and the way in which the organism uses those conditions. Includes where in the food chain it is, where an organism feeds  Habitat is like an address in an ecosystem and a niche is like an occupation in an ecosystem.

18 Community Interactions  when organisms live together in an ecological community they interact constantly.  Three types of interactions –Competition –Predation –Symbiosis

19 Competition- competing for resources  occurs due to a limited number of resources  Resource- any necessity of life. water, nutrients, light, food.  Competitive exclusion principle- no two species can occupy the same niche in the same habitat at the same time

20 Predation  Predation- when an organism captures and feeds on another organism.  Predator- hunter  Prey- hunted

21 Symbiosis  Symbiosis- any relationship where two species live closely together. (3 types) –Mutualism –Commensalism –Parasitism

22 Symbiosis  Mutualism- both species benefit from a relationship.  Lichens (fungus and Algae) One example is the lichens, little non-descript patches of stuff you see growing on rocks and tree bark. This is a symbiosis, consisting of a fungus and an alga. The fungus provides a protective home for the algae, and gathers mineral nutrients from rainwater and from dissolving the rock underneath. The alga gathers energy from the sun. There are thousands of species of lichen in the world; actually thousands of species of fungi with just a few species of algae which can form a partnership with almost any of them.

23 Symbiosis  Commensalism – One member of a symbiotic relationship benefits and the other is neither helped or harmed  Ex. Holes used by bluebirds in a tree were chiseled out by woodpeckers after it has been abandoned.

24 Symbiosis  Parasitism- One creature benefits and one creature is harmed  Ex tapeworm. Feeds in a humans intestines absorbing his/her nutrients.

25 Relationships: Symbiosis = Living Together a) commensalism b) mutualism c) parasitism

26 Identify these relationships

27 ENERGY FLOW Autotrophs vs. Heterotrophs

28 Energy Flow (Trophic Levels)  Producers- make their own food  Consumers- get energy from consuming producers

29 Producers  Producers- capture energy from sunlight or chemicals and use the energy to produce food.  Producers are autotrophs- they make food from their environment

30 2 main types of autotrophs  One type gets energy from the sun-by photosynthesis  Another type gets energy without light- by chemosynthesis

31 Consumers  Consumers are heterotrophs- get energy from other organisms

32 Types of Consumers  Herbivores- eat only plants  Carnivores- eat animals  Omnivores- eat both plants and animals  Detritivores- eat dead matter (plants and animals)

33 Feeding Relationships  Energy flows through an ecosystem in one direction from: –1. the sun or inorganic compounds –2. To autotrophs (producers) –3. To heterotrophs (consumers) –Decomposers get energy from decomposing dead organisms

34 Food Web- A network of feeding relationships. (More realistic that a food chain) Food Chain- a series of steps in which organisms transfer energy by eating or being eaten.

35 Food Web


37 They can become very complex!

38 Trophic levels  Each step in a food chain or a food web is called a trophic level. –Producers are the first trophic level –Consumers are the second, third, or higher trophic level  Each trophic level depends on the one below for energy

39 Energy Pyramid  Only part of the energy stored in one level can be passed to the next- most energy is consumed for life processes (respiration, movement, etc., and heat is given off)  Only 10% of the energy available within one trophic level is transferred to organisms in the next trophic level

40 Biomass Pyramid  Biomass- the total amount of living tissue within a given trophic level.  A biomass pyramid represents the amount of potential food available for each trophic level in an ecosystem.


42 Energy Losses  Energy transfers are never 100 percent efficient  Some energy is lost at each step  Limits the number of trophic levels in an ecosystem  Energy flow is a one way path! (not a cycle)

43 All Heat in the End  At each trophic level, the bulk of the energy received from the previous level is used in metabolism  This energy is released as heat energy and lost to the ecosystem  Eventually, all energy is released as heat

44  All living organisms need certain elements/compounds for life processes –Ex: your cells need C,H,O,P,N & S in order to live and reproduce (make more cell)  Cycles in nature keep these elements “moving” from organisms to organism (and sometimes into the atmosphere) Biogeochemical Cycles (Matter moving through the environment)

45  The flow of a nutrient from the environment to living organisms and back to the environment  Main reservoir for the nutrient is in the environment  Transfer rates to and from reservoir are usually lower than the rates of exchange between and among organisms.  Matter is recycled through an ecosystem – not one way flow

46 Three Categories  Hydrologic cycle –Water  Atmospheric cycles –Nitrogen and carbon  Sedimentary cycles –Phosphorus and sulfur



49 Carbon Cycle  Carbon moves through the atmosphere and food webs on its way to and from the ocean, sediments, and rocks  Sediments and rocks are the main reservoir


51 Carbon Cycle photosynthesis TERRESTRIAL ROCKS volcanic action weathering diffusion Bicarbonate, carbonate Marine food webs Marine Sediments Atmosphere Terrestrial Rocks Soil Water Peat, Fossil Fuels Land Food Webs

52 Carbon in the Oceans  Most carbon in the ocean is dissolved carbonate and bicarbonate  Ocean currents carry dissolved carbon

53 Carbon in Atmosphere  Atmospheric carbon is mainly carbon dioxide  Carbon dioxide is added to atmosphere –Aerobic respiration, volcanic action, burning fossil fuels, decomposition of organic materials  Removed by photosynthesis

54 Nitrogen Cycle  Nitrogen is used in amino acids and nucleic acids (all living organism need nitrogen to make proteins)  Main reservoir is nitrogen gas in the atmosphere  Decomposers are vital to convert ammonia into: 1. usable nitrites & nitrates for plants (nitrogen fixation) 2. nitrogen gas (denitrification = puts it back into the atmosphere)



57 Phosphorus Cycle  Phosphorus is part of phospholipids and all nucleotides –What are these?  It is the most prevalent limiting factor in ecosystems  Main reservoir is Earth’s crust; no gaseous phase (it never enters the atmosphere – like carbon and nitrogen)

58 Phosphorus Cycle GUANO FERTILIZER ROCKS LAND FOOD WEBS DISSOLVED IN OCEAN WATER MARINE FOOD WEBS MARINE SEDIMENTS excretion weathering mining agriculture uptake by autotrophs death, decomposition sedimentationsetting out leaching, runoff weathering uplifting over geolgic time DISSOLVED IN SOILWATER, LAKES, RIVERS uptake by autotrophs death, decomposition


60 Communities & Biomes  Vocabulary to Know: –Limiting Factor –Succession  Primary  Secondary –Climax Community

61 Community  All the populations that live together in a habitat  Habitat is the type of place where individuals of a species typically live  Type of habitat shapes a community’s structure

62 Limiting Factors  Definition?

63 What factors would limit these communities?

64 What is Succession & what causes it?  Changes to a community  Biotic Factor  Abiotic Factors

65 2 Types of succession  Primary –From nothing –Even the soil must be “created”  Secondary –From soil –Disaster can strike and make it start over

66 Primary Succession

67 Secondary Succession


69 Pioneer Species  Species that colonize barren habitats  Lichens, small plants with brief life cycles  Improve conditions for other species who then replace them

70 Climax Community  Stable array of species that persists relatively unchanged over time  Succession does not always move predictably toward a specific climax community; other stable communities may persist

71 Pioneer stage  Climax Community The trend of Succession

72 Biogeography The study of the distribution of organisms and the processes that underlie distribution patterns

73 Factors that Affect Distribution  Geologic history  Topography  Climate  Species interactions

74 Climate  Average weather condition in a region  Affected by: –amount of incoming solar radiation –prevailing winds –elevation

75 Rotation and Wind Direction  Earth rotates faster under the air at the equator than it does at the poles  Deflection east and west

76 Seasonal Variation  Northern end of Earth’s axis tilts toward sun in June and away in December  Difference in tilt causes differences in sunlight intensity and day length  The greater the distance from the equator, the more pronounced the seasonal changes

77 Ocean Currents  Upper waters move in currents that distribute nutrients and affect regional climates

78 Rain Shadow  Air rises on the windward side, loses moisture before passing over the mountain

79 Soil Characteristics  Amount of humus  pH  Degree of aeration  Ability to hold or drain water  Mineral content

80 Biogeographic Realms  Six areas in which plants and animals are somewhat similar  Maintain their identity because of climate and physical barriers that tend to maintain isolation between species

81 Biomes  Regions of land characterized by habitat conditions and community structure  Distinctive biomes prevail at certain latitudes and elevations

82 Biomes

83 Biome Chart (to fill in during presentations) Create a Biome Table with the Following Columns: 1. Name of Biome 2. Major Location(s) 3. Avg. Temperature/climate 4. Avg. Rainfall – convert to inches 5. Major plant life 6. Major animals 7.Other – include things such as other major identifying factors of the biome, alternate names of the biome, limiting factors of the biome for plants/animals, etc. Note: To convert rainfall from cm to in = 1cm X.39 = in

84 BiomeLocationTemp.RainfallPlantsAnimalsOther Coral Reef Savannah

85 Population Biology  What is a population?  What is exponential population growth?  What happens to a population when it reaches its carrying capacity?

86 How many mice are in the following population? Estimate! ReadySET Go!


88 How many did you count? What is the best way to count them? SAMPLING

89 Population Sampling  Sometimes, the entire population to be studied is small enough for the researcher to include the entire population in the study. –This type of research is called a census study because data is gathered on every member of the population.  Usually, the population is too large for the researcher to attempt to survey all of its members. –A small, but carefully chosen sample can be used to represent the population. –The sample reflects the characteristics of the population from which it is drawn

90 Sampling Methods  There are LOTS ways to sample a population including: –Biased sampling, Systematic sampling, Stratified sampling, Judgment sampling, Quota sampling, Snowball sampling, Counting method, Hit-or- miss method, etc…  HOWEVER, the most common methods are: –Random and non-random sampling –Each gives you a “best estimate” of the population size

91 Population Size  Factors that affect: –Natality –Mortality/Fatality –Immigration –Emigration

92 Population Growth Curves  Explain what is happening to the populations below:

93 Population Growth Curves  Explain what is happening to the populations below:

94  Rate at which a population could grow if it had unlimited resources  If a population reached its biotic potential it would have exponential growth Biotic Potential = Reproductive Potential


96 The “J” Curve

97 The “S” Curve This graph shows a typical population growth curve. Under ideal conditions a population would have a growth with a slow start, then a very fast rate of increase and finally the growth slows down and stops.

98 Population Density 

99 Environmental Limits on populations  Density-dependent –Disease –Food –Parasitism –Predation –Competition  Intraspecific  Interspecific  Density-independent –Temperature –Storms –Floods –Drought –Habitat Disruption


101 Density Dependent  Here is a dramatic example of how competition among members of one species for a finite resource — in this case, food — caused a sharp drop in population.  The graph shows a population crash; in this case of reindeer on two islands in the Bering Sea. Inter or Intra?

102 Density Dependent  This graph shows the effect of interspecific competition on the population size of two species of paramecia, Paramecium aurelia and Paramecium caudatum.  When either species was cultured alone — with fresh food added regularly — the population grew exponentially at first and then leveled off.  However, when the two species were cultured together, P. caudatum proved to be the weaker competitor. After a brief phase of exponential growth, its population began to decline and ultimately it became extinct. The population of P. aurelia reached a plateau, but so long as P. caudatum remained, this was below the population density it achieved when grown alone.

103 Density Independent  This graph shows the decline in the population of one of Darwin's finches on Daphne Major, a tiny (100- acre) member of the Galapagos Islands. The decline (from 1400 to 200 individuals) occurred because of a severe drought that reduced the quantity of seeds on which this species feeds. The drought ended in 1978, but even with ample food once again available the finch population recovered only slowly.

104 Organism Interactions Limit Populations  Predation  Competition –Both types  Parasitism  Crowding/stress

105 The Human Population Figure 4.10 pg 104

106 Demography Vocabulary  Age Structure  Immigration  Emigration  Birth/Death Rate

107 Age Structure Pyramids  These pyramids compare the age structure of the populations of France and India in The relative number (%) of males and females is shown in 5-year cohorts. Almost 20% of India's population were children — 15 years or less in age — who had yet to begin reproduction. When the members of a large cohort like this begin reproducing, they add greatly to birth rates. In France, in contrast, each cohort is about the size of the next until close to the top when old age begins to take its toll.

108 Age Structure Pyramids  These population pyramids show the baby-boom generation in 1970 and again in 1985 (green ovals).  Profound changes (e.g. enrollments in schools and colleges) have occurred — and continue to occur — in U.S. society as this bulge passes into ever-older age brackets.

109 Diversity & Conservation  Importance to nature  Importance to people –Oxygen –Diet –Medicines

110 Loss of Diversity  Threatened Species  Endangered Species  Extinction of Species

111 Alabama listingsAlabama Alaska listingsAlaska Arizona listingsArizona Arkansas listingsArkansas California listingsCalifornia Colorado listingsColorado Connecticut listingsConnecticut Delaware listingsDelaware District of Columbia -- 3 listingsDistrict of Columbia Florida listingsFlorida Georgia listingsGeorgia Hawaii listingsHawaii Idaho listingsIdaho Illinois listingsIllinois Indiana listingsIndiana Iowa listingsIowa Kansas listingsKansas Kentucky listingsKentucky Louisiana listingsLouisiana Maine listingsMaine Maryland listingsMaryland Massachusetts listingsMassachusetts Michigan listingsMichigan Minnesota listingsMinnesota Mississippi listingsMississippi Missouri listingsMissouri Montana listingsMontana Nebraska listingsNebraska Nevada listingsNevada New Hampshire listingsNew Hampshire New Jersey listingsNew Jersey New Mexico listingsNew Mexico New York listingsNew York North Carolina listingsNorth Carolina North Dakota -- 8 listingsNorth Dakota Ohio listingsOhio Oklahoma listingsOklahoma Oregon listingsOregon Pennsylvania listingsPennsylvania Rhode Island listingsRhode Island South Carolina listingsSouth Carolina South Dakota listingsSouth Dakota Tennessee listingsTennessee Texas listingsTexas Utah listingsUtah Vermont -- 8 listingsVermont Virginia listingsVirginia Washington listingsWashington West Virginia listingsWest Virginia Wisconsin listingsWisconsin Wyoming listingsWyoming American Samoa -- 4 listingsAmerican Samoa Guam listingsGuam Northern Mariana Islands listingsNorthern Mariana Islands Puerto Rico listingsPuerto Rico Virgin Islands listingsVirgin Islands Outlying Caribbean Islands -- 0 listingsOutlying Caribbean Islands Outlying Pacific Islands -- 0 listingsOutlying Pacific Islands Endangered Species/State 2004 Data


113 Threats to Biodiversity  Habitat Loss  Habitat Fragmentation –Biotic Issues –Abiotic Issues  Habitat Degradation –Air Pollution –Water Pollution –Land Pollution

114 Exotic Species  Non-native organisms that “move-in” to a particular area  There can be a lack of competitors = exponential growth  Can take over the niches of native species Example: Page 124

115 Conservation  Sustainable use: –Use what you need, but don’t damage the ecosystem Is this a good example of sustainable use?

116 Conservation Habitat Corridors

117 Conservation  Reintroduction Programs  Captivity Breeding Example: The Ginkgo Tree would probably be extinct if it were not for Chinese monks keeping it in captivity around temples

118 Humans & The Environment  Pest Control –Benefits vs. Problems –EX: DDT

119 Humans & The Environment  Ozone (O 3 ) Depletion –O 3 forms a “good layer” around the Earth –CFC release is breaking down the protective ozone layer –UV rays increase skin cancers & other cell mutations to plants & animals!


121 Humans & The Environment  Acid Precipitation –In the form of rain, snow, dew or fog –Created when gases such as nitrogen oxide (NOx) and sulfur oxide (SOx), generated in the burning of fossil fuels such as coal and oil, react in the atmosphere with sunlight to produce acids such as nitric and sulfuric acid. These acids dissolve in rain to become acid rain.

122 How is Acidity Measured?  When we observe acid rain, acidity is measured in units called pH.  The pH scale is from 0 to 14 –pH 7 indicates neutral –higher pH numbers = alkalinity (base) –smaller numbers = acid  We’ll do more on pH in the “Biochemistry” chapter

123 Natural Acid Precipitation  CO 2 combines with water to form a weak acid H 2 CO 3 (carbonic acid)  But we are adding to the problem… –by adding nitric and sulfuric acids Look at the “clean rain” – it’s already slightly acidic???

124 Effects of Acid Precipitation In Japan, rain which registers pH 5.6 or less is considered acid rain; some 80-90% of the rain that falls in Japan in a year is acid rain. In Japan, acid rain with acidity equal to lemon juice has been observed at Mount Tsukuba in 1984 (pH 2.5) and at Kagoshima in 1987 (pH 2.45). The problem is even more serious in North America and Europe. In those regions, forests are withering and lakes becoming uninhabitable to fish, and stone structures such as buildings and bronze statues are being damaged by corrosion


126 Humans & The Environment  Global Warming –“The Greenhouse Effect” –Fossil fuels give off lots of CO 2 –This builds a blanket around the earth –It is predicted that the Earth temp. will increase ~5 0 C before 2050 = Ice age????

127 Carbon Dioxide Increase  Carbon dioxide levels fluctuate seasonally  The average level is steadily increasing  Burning of fossil fuels & deforestation are contributing to the increase

128 Greenhouse Effect  Greenhouse gases impede the escape of heat from Earth’s surface


130 Global Warming  Long-term increase in the temperature of Earth’s lower atmosphere

131 Other Greenhouse Gases  CFCs - synthetic gases used in plastics and in refrigeration  Methane - produced by termites and bacteria  Nitrous oxide - released by bacteria, fertilizers, and animal wastes

132 Hopefully, this is NOT the end!

Download ppt "Review of the Ecology Unit Post Falls High School Biology."

Similar presentations

Ads by Google