Presentation is loading. Please wait.

Presentation is loading. Please wait.

Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-1aClassification of hormones. (a) Endocrine signals are directed at distant cells through.

Similar presentations


Presentation on theme: "Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-1aClassification of hormones. (a) Endocrine signals are directed at distant cells through."— Presentation transcript:

1 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-1aClassification of hormones. (a) Endocrine signals are directed at distant cells through the intermediacy of the bloodstream. Page 658

2 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-1bClassification of hormones. (b) Paracrine signals are directed at nearby cells. Page 658

3 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-1cClassification of hormones. (c) Autocrine signals are directed at the cell that produced them. Page 658

4 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-2Major glands of the human endocrine system. Page 658

5 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-3aBinding of ligand to receptor. (a) A hyperbolic plot. Page 660

6 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-3bBinding of ligand to receptor. (b) A Scatchard plot. Page 660

7 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-4Biosynthesis of T 3 and T 4 in the thyroid gland. Page 662

8 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-5The roles of PTH, vitamin D, and calcitonin in controlling Ca 2+ metabolism. Page 663

9 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-6Activation of vitamin D 3 as a hormone in liver and kidney. Page 665

10 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-7Hormonal control circuits, indicating the relationships between the hypothalamus, the pituitary, and the target tissues. Page 668

11 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-8Patterns of hormone secretion during the menstrual cycle in the human female. Page 669

12 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-9X-Ray structure of human growth hormone (hGH) in complex with two molecules of its receptor’s extracellular domain (hGHbp). Page 670

13 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-10Acromegaly. Page 670

14 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-11The NO synthase (NOS) reaction. Page 671

15 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-12X-Ray structure of the oxygenase domain of iNOS. Page 672

16 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-13Activation/deactivation cycle for hormonally stimulated AC. Page 674

17 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-14General structure of a G protein-coupled receptor (GPCR). Page 674

18 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-15X-Ray structure of bovine rhodopsin. Page 675

19 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-16Mechanism of receptor-mediated activation/ inhibition of AC. Page 676

20 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-17aStructural differences between the inactive and active forms of G t  (transducin). (a) G t  ·GDP ribbon form. Page 678

21 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-17bStructural differences between the inactive and active forms of G t  (transducin). (b) G t  ·GDP spacing- filling form. Page 678

22 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-17cStructural differences between the inactive and active forms of G t  (transducin). (c) G t  ·GTP  S ribbon form. Page 678

23 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-17dStructural differences between the inactive and active forms of G t  (transducin). (d) G t  ·GTP  S spacing- filling form. Page 678

24 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-18aX-Ray structure of the heterotrimeric G protein G i. Page 679

25 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-18bX-Ray structure of the heterotrimeric G protein G i. (b) View related to that in Part a by a 90° rotation. Page 679

26 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-19Mechanism of action of cholera toxin. Page 680

27 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-20aX-Ray structure of cholera toxin. Page 681

28 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-20bX-Ray structure of cholera toxin. (b) The structure of only the B 5 pentamer in which each subunit is binding CT’s G M1 receptor pentasaccharide. Page 681

29 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-21Schematic diagram of a typical mammalian AC. Page 682

30 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-22The X-ray structure of an AC catalytic core. Page 682

31 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-23Domain organization in a variety of receptor tyrosine kinase (RTK) subfamilies. Page 684

32 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-24The X-ray structure of the 2:2:2 complex of FGF2, the D2–D3 portion of FGFR1, and a heparin decasaccharide. Page 685

33 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-25Schematic diagrams of RTKs. Page 686

34 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-26aX-Ray structure of the PTK domain of the insulin receptor. Page 687

35 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-26bX-Ray structure of the PTK domain of the insulin receptor. Page 687

36 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-27aGrowth pattern of vertebrate cells in culture. (a) Normal cells stop growing through contact inhibition once they have formed a confluent monolayer. Page 688

37 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-27bGrowth pattern of vertebrate cells in culture. (b) In contrast, transformed cells lack contact inhibition; they pile up to form a multilayer. Page 688

38 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-28Variation of the cancer death rate in humans with age. Page 688

39 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-29aTransformation of cultured chicken fibroblasts by Rous sarcoma virus. (a) Normal cells adhere to the surface of the culture dish. Page 689

40 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-29bTransformation of cultured chicken fibroblasts by Rous sarcoma virus. (b) On infection with RVS, these cells become rounded and cluster together in piles. Page 689

41 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-30The two-hybrid system. Page 690

42 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-31aX-Ray structure of the 104-residue Src SH2 domain in complex with an 11-residue polypeptide containing the protein’s pYEEI target tetrapeptide. Page 691

43 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-31bX-Ray structure of the 104-residue Src SH2 domain in complex with an 11-residue polypeptide containing the protein’s pYEEI target tetrapeptide. Page 691

44 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-32The NMR structure of the PTB domain of Shc in complex with a 12-residue polypeptide from the Shc binding site of a nerve growth factor (NGF) receptor. Page 692

45 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-33X-Ray structure of the SH3 domain from Abl protein in complex with its 10-residue target Pro-rich polypeptide (APTMPPPLPP). Page 693

46 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-34X-Ray structure of Grb2. Page 694

47 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-35Structure of an insulin receptor substrate protein. Page 694

48 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-36X-Ray structure of the complex between Ras and the GEF-containing region of Sos. Page 695

49 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-38The Ras-activated MAP kinase cascade. Page 696

50 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-39X-Ray structure of the Ras binding domain of Raf (RafRBD; orange) in complex with Rap1A·GDPNP (light blue). Page 697

51 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-40MAP kinase cascades in mammalian cells. Page 698

52 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-41aSome examples of scaffold proteins that modulate mammalian MAP kinase cascades. (a) JIP-1. Page 699

53 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-41bSome examples of scaffold proteins that modulate mammalian MAP kinase cascades. (b) MEKK1. Page 699

54 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-42Domain organization of the major NRTK subfamilies. Page 700

55 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-43X-Ray structure of Src·ADPNP lacking its N- terminal domain and with Tyr 527 phosphorylated. Page 700

56 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-44aSchematic model of Src activation. Page 701

57 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-44bSchematic model of Src activation. Page 701

58 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-45The JAK-STAT pathway for the intracellular relaying of cytokine signals. Page 702

59 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-46X-Ray structure of the Abl PTK domain in complex with a truncated derivative of gleevec. Page 703

60 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-47X-Ray structure of the protein tyrosine phosphatase SHP-2. Page 705

61 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-48X-Ray structure of the A subunit of PP2A. Page 706

62 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-49aCalcineurin. (a) X-Ray structure of human FKBP12·FK506–CaN. Page 707

63 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-49bCalcineurin. (b) X-Ray structure of human CaN with CaNA yellow, its autoinhibitory segment red, and CaNB cyan. Page 707

64 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-50Molecular formula of the phosphatidylinositides. Page 707

65 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-51Role of PIP 2 in intracellular signaling. Page 708

66 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-52A phospholipase is named according to the bond that it cleaves on a glycerophospholipid. Page 709

67 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-53Domain organization of the four classes of phosphoinositide-specific PLCs. Page 709

68 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-54X-Ray structure of phospholipase C-  1 lacking its N-terminal PH domain in complex with PIP 3 and Ca 2+ ions. Page 710

69 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-55X-Ray structure of the pleckstrin homology domain of PLC-  1 in complex with PIP 3. Page 711

70 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-56X-Ray structure of the C1B motif of PKC in complex with phorbol-13-acetate. Page 712

71 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-57Activation of PKC. Page 713

72 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-58Flow chart of reactions in the synthesis of phosphoinositides in mammalian cells. Page 714

73 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-59Domain organization of the 3 classes of PI3Ks. Page 714

74 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-60X-Ray structure of PI3K  ·ATP. Page 715

75 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-61X-Ray structure of PI3K  –Ras·GDPNP. Page 715

76 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-62NMR structure of the EEA1 FYVE domain in complex with PtdIns-3-P. Page 716

77 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-63X-Ray structure of PTEN. Page 718

78 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-64Insulin signal transduction. Page 719

79 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Table 19-1Some Human Hormones – Polypeptides. Page 659

80 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Table 19-1 (continued)Some Human Hormones – Polypeptides. Page 659

81 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Table 19-1 (continued)Some Human Hormones – Steroids. Page 659

82 Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Table 19-1 (continued)Some Human Hormones – Amino Acid Derivatives. Page 659


Download ppt "Voet Biochemistry 3e © 2004 John Wiley & Sons, Inc. Figure 19-1aClassification of hormones. (a) Endocrine signals are directed at distant cells through."

Similar presentations


Ads by Google