Presentation is loading. Please wait.

Presentation is loading. Please wait.

4/24/2015 Industrial Safety Lecture Four 1 Safe Materials Handling and Machine Safety Joe Nail.

Similar presentations


Presentation on theme: "4/24/2015 Industrial Safety Lecture Four 1 Safe Materials Handling and Machine Safety Joe Nail."— Presentation transcript:

1

2 4/24/2015 Industrial Safety Lecture Four 1 Safe Materials Handling and Machine Safety Joe Nail

3 4/24/2015 Industrial Safety Lecture Four 2 Introduction Handling Materials Safely Handling Materials Safely 50 tons per one ton shipped. 50 tons per one ton shipped. Some is moved by machine and some by hand. Some is moved by machine and some by hand. When handling material, technique is everything. When handling material, technique is everything.

4 4/24/2015 Industrial Safety Lecture Four 3 Causes of Injuries 25% of all injuries are related to material handling. 25% of all injuries are related to material handling. 80% are to the lower back. 80% are to the lower back. Incorrect lifting causes most injuries. Incorrect lifting causes most injuries. Incorrect use of equipment. Incorrect use of equipment.

5 4/24/2015 Industrial Safety Lecture Four 4 Carelessness Be aware of your environment. Be aware of your environment. Hey Charlie! Did you see that game last night?

6 4/24/2015 Industrial Safety Lecture Four 5 Avoiding Workplace Injuries Stay in shape. Stay in shape. Consider where you will walk. Consider where you will walk. Don’t use your body if you don’t have to. Don’t use your body if you don’t have to.

7 4/24/2015 Industrial Safety Lecture Four 6 Rules for Lifting Get close to the load. Get close to the load. Keep feet apart. Keep feet apart. Keep back straight. Keep back straight. Bend your knees. Bend your knees. Tuck your chin. Tuck your chin. Grip the load with your palms. Grip the load with your palms.

8 4/24/2015 Industrial Safety Lecture Four 7 Hazards Associated with Materials Handling Check your environment for sufficient moving room Check your environment for sufficient moving room Check for projecting objects, wear gloves. Check for projecting objects, wear gloves. Are materials secure? Are materials secure? Are chemicals to be moved? Are chemicals to be moved?

9 4/24/2015 Industrial Safety Lecture Four 8 Teamwork and Handling Various Shapes and Sizes If If an object seems to heavy to lift, it probably is. When When working with others, communication is critical. Your Your back should be kept straight when you carry objects. Special Special lifting tools should be sought out and used for large objects. Protect Protect yourself when handling things.

10 4/24/2015 Industrial Safety Lecture Four 9 Examples of Lifting Equipment

11 4/24/2015 Industrial Safety Lecture Four 10 Hand Tools and Accessories

12 4/24/2015 Industrial Safety Lecture Four 11 Power Operated Hand Trucks Examples of a “walkie” and a “rider” type powered hand trucks

13 4/24/2015 Industrial Safety Lecture Four 12 Powered Industrial trucks Trucks are usually classified by power source. Trucks are usually classified by power source. Electric Motors Electric Motors Internal Combustion Engine Internal Combustion Engine –Gasoline –Diesel –LP Liquefied Petroleum

14 4/24/2015 Industrial Safety Lecture Four 13 Standard Powered Industrial Lift Truck

15 4/24/2015 Industrial Safety Lecture Four 14 Straddle Truck

16 4/24/2015 Industrial Safety Lecture Four 15 Order Picker Truck

17 4/24/2015 Industrial Safety Lecture Four 16 Industrial Truck Safety Popular Misconceptions Anyone “Anyone can drive a lift truck.” “They “They handle just like a car.” are easier to drive than a car.” “You “You don’t need any training to safely drive a fork lift.”

18 4/24/2015 Industrial Safety Lecture Four 17 Industrial Truck Safety Facts The center of gravity of a lift truck changes. The center of gravity of a lift truck changes. Most trucks are “rear steer.” Most trucks are “rear steer.” Most trucks have no suspension system. Most trucks have no suspension system. It is NOT safe to alter the lift truck’s counterweight! It is NOT safe to alter the lift truck’s counterweight!

19 4/24/2015 Industrial Safety Lecture Four 18 Industrial Truck Safety What does OHSA say about powered industrial truck training? What does OHSA say about powered industrial truck training? OSHA regulations state that “only trained and authorized operators shall be permitted to operate a powered industrial truck.” OSHA regulations state that “only trained and authorized operators shall be permitted to operate a powered industrial truck.” But why? But why?

20 4/24/2015 Industrial Safety Lecture Four 19 Get the picture? Training helps to Prevent Accidents!

21 4/24/2015 Industrial Safety Lecture Four 20 Data plate.

22 Powered Industrial Trucks - Operator Training (l) (a) (a)(2)(xiv) (b)(10) (d)

23 22 Disclaimer This presentation is intended as a resource for providing training on OSHA’s revised powered industrial truck operator standards. It is not a substitute for any of the provisions of the Occupational Safety and Health Act of 1970, or for any standards issued by the U.S. Department of Labor’s Occupational Safety and Health Administration (OSHA). It is also not a substitute for a powered industrial truck operator training program.

24 23 Acknowledgment OSHA’s Office of Training and Education wishes to acknowledge the following for contributing some of the graphics used in this presentation: –Caterpillar Lift Trucks –Mason Contractors Association of America –Industrial Truck Association –State of Utah Labor Commission - Occupational Safety & Health Division –Steamship Trade Association of Baltimore –Taylor Machine Works, Inc. –UAW - Ford National Joint Committee on Health and Safety Appearance of products does not imply endorsement by the U.S. Department of Labor.

25 24 Powered Industrial Truck - Definition A mobile, power-propelled truck used to carry, push, pull, lift, stack or tier materials. [American Society of Mechanical Engineers (ASME) definition] Excluded are vehicles used for earth moving and over-the-road hauling. Commonly known as forklifts, pallet trucks, rider trucks, forktrucks, or lifttrucks. Can be powered through electric or combustion engines.

26 25 Scope of Standard The scope provisions of (a), which are based on ANSI B , remain in effect and cover: –... fork trucks, tractors, platform lift trucks, motorized hand trucks, and other specialized industrial trucks powered by electric motors or internal combustion engines. –It does not apply to compressed air or nonflammable compressed gas-operated industrial trucks, farm vehicles, nor vehicles intended primarily for earth moving or over- the-road hauling. This scope covers general industry, construction and shipyards.

27 26 Scope of Standard (continued) For marine terminal and longshoring industries, all powered industrial trucks are covered, no matter what specialized name they are given. This includes, but is not limited to, straddle carriers, hustlers, toploaders, container reach stackers, and other vehicles that carry, push, pull, lift, or tier loads.

28 27 Reasons for New Standard Powered industrial truck accidents cause approximately 100 fatalities and 36,340 serious injuries in general industry and construction annually. It is estimated that % of the accidents are, at least in part, caused by inadequate training.

29 28 Additional Reasons for New Standard Updated consensus standards have been published. OSHA has been petitioned to improve the requirements for industrial truck training. Advisory Committee on Construction Safety and Health has recommended improving the standard. Resolutions have been introduced in the Senate and House urging OSHA to revise its outdated standard.

30 29 Forklift Fatalities, Source: Bureau of Labor Statistics, Job Related Fatalities Involving Forklifts

31 30 Forklift Fatalities by Age Group Source: Bureau of Labor Statistics

32 31 Industries Where Powered Industrial Truck Accidents Occurred Source: OSHA Fatality/Catastrophe Reports, complied by OSHA Office of Electrical/Electronic and Mechanical Engineering Safety Standards.

33 32 Source: Bureau of Labor Statistics, Job Related Fatalities by Selected Characteristics, Nonfatal Occupational Injuries and Illnesses by Source, 1996

34 33 Background The previous OSHA standards, while requiring operator training, did not define the type of training or authorization required. March 15, Industrial Truck Association (ITA) petitioned OSHA for specific training requirements.

35 34 Background (continued) American National Standards Institute (ANSI), in cooperation with ASME, has revised its standard 4 times, including current lifttruck technology and specific training topics.

36 35 Background (continued) OSHA published a proposed ruling on March 14, 1995 for General Industry, Shipyard, Marine Terminals, and Longshoring regulations, adding specific training requirements. On January 30, 1996, OSHA proposed a revision of the construction standards, mandating the development of an operator training program based on the prior knowledge and skills of the trainee and requiring a periodic evaluation.

37 36 Final Rule OSHA published the final rule for Powered Industrial Truck Operator Training on December 1, The effective date is March 1, Start- up dates are included in paragraph (l)(7). It applies to all industries except agricultural operations. OSHA estimates that the new rule will prevent 11 deaths and 9,422 injuries per year.

38 37 Fatalities/Injuries Potentially Averted Annually by New Standard Source: U.S. Department of Labor, OSHA, Office of Regulatory Analysis, 1997

39 38 Performance-Oriented Requirements The powered industrial truck operator training requirements are performance- oriented to permit employers to tailor a training program to the characteristics of their workplaces and the particular types of powered industrial trucks operated.

40 39 Revised Operator Training Requirements General Industry: is amended by revising paragraph (l) and adding Appendix A. Shipyard Employment: New section and Appendix A are added. Marine Terminals: Section is amended by adding new paragraph (a)(2)(xiv) and Appendix A. Longshoring: Section is amended by adding new paragraph (b)(10) and Appendix A. Construction: is amended by adding new paragraph (d) and Appendix A.

41 40 Operator Training Safe operations –The employer shall ensure that each powered industrial truck operator is competent to operate a powered industrial truck safely, as demonstrated by successful completion of the training and evaluation specified in the OSHA standard. –Prior to permitting an employee to operate a powered industrial truck (except for training purposes), the employer shall ensure that each operator has successfully completed the required training (or previously received appropriate training).

42 41 Training Program Implementation Trainees may operate a powered industrial truck only: –Under direct supervision of a person who has the knowledge, training, and experience to train operators and evaluate their competence; and, –Where such operation does not endanger the trainee or other employees.

43 42 Training Program Implementation (continued) n Training shall consist of a combination of: u Formal instruction (e.g., lecture, discussion, interactive computer learning, written material), u Practical training (demonstrations and exercises performed by the trainee), and u Evaluation of the operator’s performance in the workplace

44 43 Training Program Implementation (continued) Training and evaluation shall be conducted by a person with the knowledge, training and experience to train powered industrial truck operators and evaluate their competence.

45 44 Training Program Content Operators shall receive initial training in the following topics, except in topics which the employer can demonstrate are not applicable to safe operation in the employer’s workplace. –Truck-related topics –Workplace-related topics –The requirements of the standard

46 45 Training Program Content (continued) –Operating instructions, warnings and precautions –Differences from automobile –Controls and instrumentation –Engine or motor operation –Steering and maneuvering –Visibility n Truck-related topics –Fork and attachment adaptation, operation, use –Vehicle capacity and stability –Vehicle inspection and maintenance that the operator will be required to perform –Refueling/Charging/ Recharging batteries –Operating limitations –Other instructions, etc.

47 46 Training Program Content (continued) –Surface conditions –Composition and stability of loads –Load manipulation, stacking, unstacking –Pedestrian traffic –Narrow aisles and restricted areas –Operating in hazardous (classified) locations –Operating on ramps and sloped surfaces –Potentially hazardous environmental conditions –Operating in closed environments or other areas where poor ventilation or maintenance could cause carbon monoxide or diesel exhaust buildup n Workplace-related topics

48 47 Training Program Content (continued) The requirements of the OSHA standard on powered industrial trucks must also be included in the initial operator training program.

49 48 Refresher Training and Evaluation Refresher training, including an evaluation of the effectiveness of that training, shall be conducted to ensure that the operator has the knowledge and skills needed to operate the powered industrial truck safely. Refresher training required when: –Unsafe operation –Accident or near-miss –Evaluation indicates need –Different type of equipment introduced –Workplace condition changes

50 49 Refresher Training and Evaluation (continued) An evaluation of each powered industrial truck operator’s performance must be conducted: –After initial training, –After refresher training, and –At least once every three years

51 50 Avoidance of Duplicative Training If an operator has previously received training in a topic specified in this section, and the training is appropriate to the truck and working conditions encountered, additional training in that topic is not required if the operator has been evaluated and found competent to operate the truck safely.

52 51 Certification The employer shall certify that each operator has been trained and evaluated as required by the standard. Certification shall include: –Name of operator –Date of training –Date of evaluation –Identity of person(s) performing the training or evaluation

53 52 Dates The employer shall ensure that operators of powered industrial trucks are trained, as appropriate, by the dates shown in the following table. If the employee was hired: The initial training and evaluation of that employee must be completed: Before December 1, 1999 By December 1, 1999 After December 1, 1999 Before the employee is assigned to operate a powered industrial truck.

54 53 Appendix A - Stability of Powered Industrial Trucks Appendix A provides non-mandatory guidance to assist employers in implementing the standard. This appendix does not add to, alter, or reduce the requirements of this section.

55 54 Appendix A - Stability of Powered Industrial Trucks Definitions General Basic Principles Stability Triangle Longitudinal Stability Lateral Stability Dynamic Stability

56 55 A B C Vehicle Center of Gravity (Unloaded) Center of Gravity of Vehicle and Maximum Load (Theoretical) Stability Triangle - Figure 1 Notes: 1.When the vehicle is loaded, the combined center of gravity (CG) shifts toward line B-C. Theoretically the maximum load will result in the CG at the line B-C. In actual practice, the combined CG should never be at line B-C. 2.The addition of additional counterweight will cause the truck CG to shift toward point A and result in a truck that is less stable laterally.

57 56 Load CG Vertical Stability Line (Line of Action) Combined CG Truck CG Load CG Combined CG Vertical Stability Line (Line of Action) Truck CG The vehicle is stable This vehicle is unstable and will continue to tip over Stability Triangle - Figure 2

58 57 Effective Powered Industrial Truck Operator Training Program Four major areas of concern must be addressed: –The general hazards that apply to the operation of all or most powered industrial trucks; –The hazards associated with the operation of particular types of trucks; –The hazards of workplaces generally; and, –The hazards of the particular workplace where the vehicle operates.

59 58 Types of Powered Industrial Trucks There are many different types of powered industrial trucks covered by the OSHA standard. Commonly used types include: –High lift trucks, counterbalanced trucks, cantilever trucks, rider trucks, forklift trucks, high lift trucks, high lift platform trucks, low lift trucks, motorized hand trucks, pallet trucks, straddle trucks, reach rider trucks, high lift order picker trucks, motorized hand/rider trucks, and counterbalanced front/side loader lift trucks. A single type of truck can only be described by calling it by all of its characteristics, (e.g., a high lift, counterbalanced, sit down rider truck).

60 59 Unique Characteristics of Powered Industrial Trucks Each type of powered industrial truck has its own unique characteristics and some inherent hazards. To be effective, training must address the unique characteristics of the type of vehicle the employee is being trained to operate.

61 60 Components of a Forklift Truck* *One of the most common types of powered industrial trucks

62 61 Classes of Commonly-Used Powered Industrial Trucks* The Industrial Truck Association has placed powered industrial trucks into 7 classes. –Class I - Electric motor rider trucks –Class II - Electric motor narrow aisle trucks –Class III - Electric motor hand trucks or hand/rider trucks –Class IV - Internal combustion engine trucks (solid/cushion tires) –Class V - Internal combustion engine trucks (pneumatic tires) –Class VI - Electric and internal combustion engine tractors –Class VII - Rough terrain forklift trucks * Note that this classification refers to commonly-used vehicles and does not include all powered industrial trucks covered by the OSHA standard.

63 62 Class I - Electric Motor Rider Trucks Counterbalanced rider type, stand up Three wheel electric trucks, sit-down Counterbalanced rider type, cushion tires, sit-down (high and low platform) Counterbalanced rider, pneumatic tire, sit- down (high and low platform)

64 63 Class I - Electric Motor Rider Trucks

65 64 Class I - Electric Motor Rider Trucks Counterbalanced Rider Type, Stand- Up

66 65 Class II - Electric Motor Narrow Aisle Trucks High lift straddle Order picker Reach type outrigger Side loaders, turret trucks, swing mast and convertible turret/stock pickers Low lift pallet and platform (rider)

67 66 Class II - Electric Motor Narrow Aisle Trucks

68 67 Class II - Narrow Aisle Trucks

69 68 Class III - Electric Motor Hand or Hand/Rider Trucks Low lift platform Low lift walkie pallet Reach type outrigger High lift straddle High lift counterbalanced Low lift walkie/rider pallet

70 69 Class III - Electric Motor Hand or Hand/Rider Trucks

71 70 Class III - Hand & Hand/Rider Trucks

72 71 Class IV - Internal Combustion Engine Trucks - Cushion (Solid) Tires Fork, counterbalanced (cushion/solid tires)

73 72 Class IV - Internal Combustion Engine Trucks - Cushion (Solid) Tires

74 73 Class V - Internal Combustion Engine Trucks - Pneumatic Tires Fork, counterbalanced (pneumatic tires)

75 74 Class V - Internal Combustion Engine Trucks (Pneumatic Tires)

76 75 Class VI - Electric & Internal Combustion Engine Tractors Sit-down rider

77 76 Class VII - Rough Terrain Forklift Trucks –Straight-mast forklift–Extended-reach forklift All rough terrain forklift trucks

78 77 Rough Terrain Straight Mast Forklifts

79 78 Rough Terrain Extended-Reach Forklifts

80 79 Some Types of Powered Industrial Trucks Used in Maritime –Container top handlers –Container reach stackers –Straddle carriers –Semi-tractors/ Utility vehicles –Sidehandlers –Combination vacuum lifts –Yard tractors n The following types of vehicles are covered by the OSHA standard if the vehicles carry, push, pull, lift, or tier loads.

81 80 Powered Industrial Trucks Used in Maritime Container Handlers

82 81 Powered Industrial Trucks Used in Maritime Empty-Container Handler

83 82 Powered Industrial Trucks Used in Maritime Container Reach Stacker

84 83 Powered Industrial Trucks Used in Maritime Straddle Carriers

85 84 Powered Industrial Trucks Used in Maritime Yard Tractor

86 4/24/2015 Industrial Safety Lecture Four 85 Dock Safety Painting of area. Painting of area. Trailer brakes and securing. Trailer brakes and securing. People in the area. People in the area. Perform daily check of truck. Perform daily check of truck.

87 4/24/2015 Industrial Safety Lecture Four 86 Dock Safety Portable Docking Plate

88 4/24/2015 Industrial Safety Lecture Four 87 Dock Safety Dock Restraint Mechanism

89 4/24/2015 Industrial Safety Lecture Four 88 Conveyors

90 4/24/2015 Industrial Safety Lecture Four 89 Conveyors Powered Powered type is most dangerous. Most Most people get hurt while working on them. injuries involve fingers, hands, and arms. Accidents Accidents can be prevented if workers are careful to turn off the power and lock it out.

91 4/24/2015 Industrial Safety Lecture Four 90 Hoists and Cranes

92 4/24/2015 Industrial Safety Lecture Four 91 Hoists and Cranes

93 4/24/2015 Industrial Safety Lecture Four 92 Hoists and Cranes Hoists and Cranes should be inspected before use, every time. Hoists and Cranes should be inspected before use, every time. When cranes fail, it usually happens fast When cranes fail, it usually happens fast. Tension on a sling is relative to total weight be lifted and angle of sling. Tension on a sling is relative to total weight be lifted and angle of sling. Never stand under a suspended load. Never stand under a suspended load.

94 4/24/2015 Industrial Safety Lecture Four 93 Receiving and Storing Materials Does this look safe to you? Does this look safe to you?

95 4/24/2015 Industrial Safety Lecture Four 94 When Storing Materials Place large, heavy packages on the bottom and lighter ones on top. Place large, heavy packages on the bottom and lighter ones on top. Never place materials where they can be tripped over or where someone could get hurt attempting to retrieve them. Never place materials where they can be tripped over or where someone could get hurt attempting to retrieve them. When materials are moved to where you are working, they should be secured so they can’t fall on anyone. When materials are moved to where you are working, they should be secured so they can’t fall on anyone. Never block a traffic path or prop materials up against a wall where they might slide over and cause an accident. Never block a traffic path or prop materials up against a wall where they might slide over and cause an accident.

96 4/24/2015 Industrial Safety Lecture Four 95 Corrosive and Flammable Liquids Understand what it is that you are about to move. Understand what it is that you are about to move. Examine the containers to make sure they are sealed and properly labeled. Examine the containers to make sure they are sealed and properly labeled. Make sure you are wearing all required PPE. Make sure you are wearing all required PPE.

97 4/24/2015 Industrial Safety Lecture Four 96 Safety Guards

98 4/24/2015 Industrial Safety Lecture Four 97 Safety Guards Are required to prevent accidents. Are required to prevent accidents. Protect people, not the machine. Protect people, not the machine. Hazardous parts include point of operation components, control mechanisms, parts that transmit power, and parts that retain stored energy Hazardous parts include point of operation components, control mechanisms, parts that transmit power, and parts that retain stored energy

99 4/24/2015 Industrial Safety Lecture Four 98 Moving Parts Make Guards Necessary

100 4/24/2015 Industrial Safety Lecture Four 99 Moving Parts Make Guards Necessary

101 4/24/2015 Industrial Safety Lecture Four 100 Point of Operation Guard OSHA 29 CFR OSHA 29 CFR

102 4/24/2015 Industrial Safety Lecture Four 101 Fixed Guards

103 4/24/2015 Industrial Safety Lecture Four 102 Fixed Guards Prevent entry into the point of operation Prevent entry into the point of operation Do not move when the machine is in operation. Do not move when the machine is in operation. Example: Barrier Guard Example: Barrier Guard Example: Enclosure Guard Example: Enclosure Guard

104 4/24/2015 Industrial Safety Lecture Four 103 Interlocking Guards Used when a fixed guard cannot be used. Used when a fixed guard cannot be used. Connected to machine controls or power source. Connected to machine controls or power source. Can be mechanical, electrical, or pneumatic. Can be mechanical, electrical, or pneumatic.

105 4/24/2015 Industrial Safety Lecture Four 104 Automatic Guards Push, pull, or sweep the operator’s hands out of the danger zone. Push, pull, or sweep the operator’s hands out of the danger zone. Example: Automatic Pull Backs Example: Automatic Pull Backs

106 4/24/2015 Industrial Safety Lecture Four 105 Presence-sensing Guards No physical barrier.Create a sensing area around the danger zone. No physical barrier.Create a sensing area around the danger zone. May use magnetic fields, radio waves, or light waves. May use magnetic fields, radio waves, or light waves. Machinery must be able to stop instantaneously Machinery must be able to stop instantaneously.

107 4/24/2015 Industrial Safety Lecture Four 106 Power Transmission Guards Prevent pieces from flying out. Prevent pieces from flying out. Should be kept in place at all times while the machine is running. Should be kept in place at all times while the machine is running. Should only be removed for repair work. Should only be removed for repair work.

108 4/24/2015 Industrial Safety Lecture Four 107 Other Safety Devices Machine controls. Feeding and extracting tools. Ejectors.

109 4/24/2015 Industrial Safety Lecture Four 108 OSHA Lock Out/Tag Out Procedures 29 CFR Locking out has to do with the removal or prevention of hazardous energy. Locking out has to do with the removal or prevention of hazardous energy. Tag out is a communication technique that warns others of the machines repair work. Tag out is a communication technique that warns others of the machines repair work.

110 109 Control of Hazardous Energy 29 CFR The standard covers the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.

111 110 Provisions Of The Standard Requires employers to establish procedures for isolating machines or equipment from their source of energy and affixing appropriate locks or tags to energy isolating devices

112 111 Employer Responsibilities Establish energy control program Establish energy control procedures for machines and equipment Provide employee training Conduct periodic inspections of the energy control program

113 112 Application Of The Standard An employee is required to remove or bypass a guard or other safety device An employee is required to place any part of their body in contact with the point of operation of the operational machine or piece of equipment An employee is required to place any part of their body into a danger zone associated with a machine operating cycle

114 113 Work on cord and plug connected electric equipment controlled by unplugging of the equipment - the plug is under exclusive control of the employee performing maintenance Exceptions To The Standard

115 114 Hot tap operations involving transmission and distribution systems for substances such as gas, steam, water, or petroleum products Exceptions To The Standard

116 115 Minor Servicing Tasks Employees performing minor tool changes and adjustments that are routine, repetitive, and integral to the use of the equipment and that occur during normal operations are not covered by the lockout/tagout standard, provided the work is performed using alternative measures that provide effective protection.

117 116 Definitions Authorized employee: A person who locks out or tags out machines or equipment in order to perform servicing or maintenance Affected employee: A person whose job requires him to operate or use a machine or equipment on which servicing or maintenance is being performed under lockout or tagout

118 117 Definitions Energy isolating device: The mechanism that prevents the transmission or release of energy and to which locks or tags are attached Includes manually operated circuit breakers, disconnect switches, line valves, blocks, and others

119 118 Lockout: The placement of a lockout device on an energy isolating device to ensure that the equipment being controlled cannot be operated until the lockout device is removed Definitions

120 119 Tagout: The placement of a tagout device on an energy isolating device to indicate the equipment being controlled may not be operated until the tagout device is removed Definitions

121 120 Shut down the machine or equipment Isolate the machine or equipment from the energy sources Apply the lockout or tagout device(s) to the energy isolating device(s) Safely release all potentially hazardous stored or residual energy Verify the isolation of the machine or equipment prior to the start of servicing work De-energizing Equipment

122 121 Stored Energy If there is a possibility of reaccumulation of stored energy to a hazardous level, verification of isolation shall be continued until the possibility of such accumulation no longer exists

123 122 Re-energizing Equipment Ensure that machine or equipment components are operationally intact Ensure that all employees are safely positioned or removed from equipment Ensure that lockout or tagout devices are removed from each energy isolation device by the employee who applied the device

124 123 Lockout/Tagout Requirements If an energy isolating device is not capable of being locked out, the employer’s energy control program shall utilize a tagout system

125 124 Lockout Requirements After January 1990, whenever replacement, major repair, or modification of a machine is performed, or whenever new machines or equipment are installed, they must be designed to accept a lockout device

126 125 Device Requirements Durable: Lockout and tagout devices must withstand the environment to which they are exposed for the maximum duration Standardized: Both lockout and tagout devices must be standardized according to either color, shape, or size Tagout devices must also be standardized according to print and format

127 126 Substantial: Lockout and tagout devices must be substantial enough to minimize early or accidental removal Identifiable: Locks and tags must clearly identify the employee who applies them. Device Requirements

128 127 Tags must also include a legend such as: –Do not start –Do not open –Do not close –Do not energize –Do not operate Tag Requirements

129 128 Periodic Inspections The employer shall conduct a periodic inspection of the energy control procedure at least annually Shall be performed by an authorized employee other than the person(s) utilizing the energy control procedure being inspected

130 129 Shall be conducted to correct any deviations or inadequacies identified Where lockout is used, the inspection shall include a review between the inspector and each authorized employee Periodic Inspections

131 130 Where tagout is used, the inspection shall include a review between the inspector and each authorized and affected employees Periodic Inspections

132 131 The employer shall: –Certify that the periodic inspections have been performed –Identify the machine or equipment on which energy control procedures were used The employer shall also note: –The date of the inspection –The employees included in the inspection –The person performing the inspection Periodic Inspections

133 132 Training and Communication Each authorized employee shall receive training in: –Recognition of applicable hazardous energy sources –Type and magnitude of the energy available in the workplace –Methods and means necessary for energy isolation and control

134 133 Each affected employee shall be instructed in the purpose and use of the energy control procedure All other employees shall be instructed about the prohibition relating to attempts to restart or reenergize machines or equipment which are locked out or tagged out Training and Communication

135 134 The employer shall certify that employee training has been accomplished and is being kept up to date Certification shall contain employee names and dates of training Training and Communication

136 135 Group Lockout or Tagout Primary responsibility is vested in an authorized employee for a set number of employees working under the protection of a group lockout or tagout device Each authorized employee shall affix a personal lockout or tagout device to the group lockout device

137 136 Outside Personnel Whenever outside servicing personnel are engaged in activities covered by lockout/tagout, the on-site employer and the outside employer shall inform each other of their respective lockout or tagout procedures

138 137 Tagout Tags

139 138 Lockout Device

140 139 Group Lockout

141 140 Tagout Tag

142 141 Lockout Signage

143 4/24/2015 Industrial Safety Lecture Four 142Review 1. What is the best way to avoid hurting yourself when moving material? 2. What is most dangerous when wearing gloves around rotating equipment? 3. Describe the best method for lifting. 4. What is the best way to carry a small box or carton? 5. What equipment can you use to move a barrel alone? 6. Describe how to handle moving a loaded hand truck down a ramp. 7. When is it permissible to ride on the platform of a moving truck? 8. What must be checked before entering a trailer on a shipping dock? 9. What is the best way to prevent accidents while working on conveyors? 10. What does the angle of a lifting sling have to do with the stress placed on it? 11. What is a pinch point? 12. What is meant by the term “point of operation”? 13. What word is used to mean a back and forth motion? 14. What is the correct spacing for a grinder wheel from the work rest? 15. What type of machine guard limits the operator’s access to the danger zone? 16. Which type of machine guard prevents access to the danger zone altogether? 17. What type of guard cannot be moved while the machine is running? 18. What type of guard, when removed, prevents the machine from running? 19. What type of guard physically pulls the operator out of the danger zone? 20. How fast should a machine stop when it is equipped with a presence sensing guard?


Download ppt "4/24/2015 Industrial Safety Lecture Four 1 Safe Materials Handling and Machine Safety Joe Nail."

Similar presentations


Ads by Google