Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chemistry for Anatomy and Physiology. Matter Can be seen, smelled or felt Occupies space and has mass (weight) We look at how building blocks are put.

Similar presentations

Presentation on theme: "Chemistry for Anatomy and Physiology. Matter Can be seen, smelled or felt Occupies space and has mass (weight) We look at how building blocks are put."— Presentation transcript:

1 Chemistry for Anatomy and Physiology

2 Matter Can be seen, smelled or felt Occupies space and has mass (weight) We look at how building blocks are put together

3 Energy The ability to do work Massless; measured by its effect on matter

4 Types of Energy Chemical Electrical Mechanical Radiant

5 Chemical Energy Stored in atomic bonds Released when bonds are broken

6 Electrical Energy Movement of charged particles Electrons along a wire at home Charged particles across a membrane in your body

7 Mechanical Energy Running, Riding a bike, paddling a canoe… Muscle contraction moves the bones of your body

8 Radiant Energy Travels in waves Electromagnetic Spectrum Includes x-rays, infrared, visible light, radio and Ultraviolet Important in vision and Vitamin D synthesis

9 Can we convert from one type to another??? While it is never created or destroyed, some energy is lost as heat. Example= Eating, only 10% of the energy is retained and the rest is lost as heat.

10 Path of Energy Begins as sun energy Photosynthesis converts sun energy to chemical We eat plants and absorb the nutrients

11 When we eat, chemical reactions produce heat Keeps our body temperature stable Provides building blocks for macromolecules Food to Macromolecules

12 Energy Storage Energy is stored in ATP molecules for use in all activities The energy is stored in the last phosphate bond ATP breaks off a phosphate and becomes ADP

13 ATP and ADP ATP = Fully Charged Battery ADP = Partially Charged Battery

14 What good is heat? Helps us maintain our body temperature Speeds up reactions in our body It is part of our ability to maintain homeostasis

15 Atomic Particles ParticleLocationChargeMass ProtonNucleus+11 amu NeutronNucleus01 amu ElectronOrbitals0 amu

16 Common Elements (p30 in 9th)(p28 in 8th) Elem % At # O 65.0% 8 C 18.5% 6 H 9.5% 1 N 3.2% 7 Ca 1.5% 20 P 1.0% 15 The number of protons identify the element and is the same as the atomic number The atomic mass is the number of protons plus the number of neutrons

17 Diagram C, H, N, O, P, S

18 Isotopes Iso=same Same element; different atomic mass Same number of protons Different number of neutrons

19 Radioisotopes Heavy isotopes tend to decompose to the lighter form The decay is called radioactivity Used to “Tag” biological molecules (PET scan) Treatment of certain localized cancers

20 Types of Bonds TypeFormed When…Characteristics IonicElectron is Transferred Between atoms with different electronegativity CovalentElectron is SharedVery strong bond Van der Waals Forces or Hydrogen Bonds Attraction between oppositely charged regions of molecules Hydrogen bonds individual = weak many = strong

21 Radioactivity Alpha or Beta particles or gamma rays are given off from the nucleus Alpha penetrates the least, gamma, most It is the electrons that are sent flying that does damage

22 Molecules and Compounds Molecules are two or more atoms of the same element that are joined H 2 or O 2 Compounds are two or more atoms of different elements join together. CH 4 or H 2 O

23 Ionic – Electron Transferred

24 Covalent – Electron Shared

25 Van der Waals Forces (oppositely charged regions )

26 Synthesis Reaction Two or more atoms or molecules combine to form a larger more complex molecule A + B → AB

27 Decomposition Reaction When a molecule is broken down into smaller less complex molecules AB → A + B

28 Exchange Reaction Involves both synthesis and decomposition. Bonds are both made and broken and a switch is made AB + CD → AD + BC

29 Organic vs Inorganic Organic = CarbonInorganic = No Carbon

30 Inorganic

31 Properties of Water #1 High Heat Capacity Water can absorb or release large amounts of heat before its temperature changes Prevents temperature changes in our body

32 Properties of Water #2 Polarity Water molecules have a slightly negative charge near the oxygen atom and a slightly positive charge around the hydrogen atom.

33 Properties of Water #2 Universal Solvent Water dissolves more substances than sulfuric acid because of its polar characteristic. It can surround molecules of a substance and pull it apart.

34 Water Properties #3 Chemical Reactivity Can break down molecules into smaller less complex forms Hydrolysis Reaction Hydro =Water Lys =Splitting

35 Water Properties #4 Cushioning Protective function in the form of fluid around sensitive organs Like: the brain, or a developing fetus

36 Other Properties of Water Cohesion Water is attracted to other water. This is called cohesion.

37 Other Properties of Water Adhesion Water can also be attracted to other materials. This is called adhesion.

38 Other Properties of Water Density Ice is less dense than water which is why it floats. It expands as it freezes Fish can live in water during winter

39 Other Properties of Water Surface Tension Cohesion of water molecules at the surface of a body of water causes the water to pull itself into a shape with the smallest amount of surface area (sphere). Surface tension allows water striders to 'skate' across the top of a pond. (Cohesion)

40 Other Properties of Water Capillary Action Adhesive properties of water. Placing a straw into a glass of water, it 'climbs' up the straw. Molecules are attracted to the straw molecules (adhesion). When one water molecule moves, the other water molecules follow (cohesion) Capillary action is limited by gravity and the size of the straw. Plants take advantage of capillary action to pull water into the roots.

41 Salts Ionic Compound Dissociate in water to: Cation + and Anion – Calcium and Phosphorus (bones and teeth) and Sodium and Potassium ELECTROLYTES conduct current in solution

42 Acids and Bases Acids = Proton donor, in the form of H+ (hydrogen or naked proton) Strong acids liberate all of their protons Sour / burn Bases = Proton acceptor or dissociate to give off OH- ions (hydroxyl) Strong bases give off all OH- Bitter / slippery

43 Neutralization Neutral pH is 7 Combine acid and base to neutralize Buffers are weak acid and bases that maintain pH stability by taking up excess H+ or OH- ions If blood is too acidic it will not carry oxygen




47 Categories of Organic Molecules Carbohydrates Lipids Proteins Nucleic Acids

48 Categories of Organic Molecles MoleculeBuilding BlocksExamplesUses Carbohydrates C H O MonosaccharidesSugars and Starches Quick Energy Lipids C H O Glycerol and Fatty Acids Fats, Oils, Waxes and Steroids Stored Energy Cell Membranes Proteins C H N O Amino AcidsMuscle Enzymes Collagen Antibodies Help Carry Out Cellular Activities Nucleic Acids C H N O P NucleotidesDNA, RNAInstructions for all cell activities Help make proteins

49 Carbohydrate

50 Lipids

51 Protein

52 Nucleic Acid

53 Building Blocks

54 4 Groups of Organic Compounds


56 Enzymes

57 Enzymes = Catalysts that speed up reactions in our body Enzymes have a specific job – each fits like a lock and key with its specific substrate

58 How Enzymes Work Four steps in the process of an enzyme working. 1. An enzyme and a substrate (the biological molecule that the enzyme will attack) are in the same area. 2. The enzyme grabs onto the substrate with a special area called the active site which is a specially shaped area of the enzyme that fits around the substrate. The active site is the keyhole of the lock. 3. A process called catalysis happens which is when the substrate is changed ( broken down or combined to make something new) 4. When the enzyme lets go, it returns to normal, ready to do another reaction. The substrate is no longer the same and is now called the product.

59 Can you stop them???? Good question! There are many factors that can regulate enzyme activity, including temperature, activators, pH levels, and inhibitors.

60 Any factors that affect the shape of an enzyme affect the enzyme’s activity. What effect does pH and temperature have on an enzymes ability to catalyze (speed up) a reaction? Enzymes work well within very specific ranges of pH and temperature. If the pH or temperature changes to outside of the range, the enzyme shape changes and thus no longer works to speed up the reaction.

Download ppt "Chemistry for Anatomy and Physiology. Matter Can be seen, smelled or felt Occupies space and has mass (weight) We look at how building blocks are put."

Similar presentations

Ads by Google