Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dror Malka and Zeev Zalevsky

Similar presentations

Presentation on theme: "Dror Malka and Zeev Zalevsky"— Presentation transcript:

1 Multicore Photonic Crystal Fiber Based 1x16 Intensity Splitters/Couplers
Dror Malka and Zeev Zalevsky Faculty of Engineering, Bar-Ilan University, Israel.

2 Spoiler We demonstrated a new design of a multicore PCF that can divide a single optical power equally into sixteen ports.

3 Photonic Crystal Fiber (PCF)
PCF is a new type of optical fiber which obtains its waveguide properties from a periodic arrangement of tiny and closely spaced variations of the refraction index which go along the whole length of fiber

4 Guiding mechanisms 1. Index guiding mechanism (similar to the one in classical optical fibers): If the defect of the structure is realized by removing the central capillary then guiding of electromagnetic wave in a PCF can be regarded as a modified total internal reflection mechanism. 2. Photonic bandgap mechanism: If the central defect is realized by inserting a central air capillary, which has a diameter different than other capillaries (usually bigger), then we can obtain a photonic bandgap.

5 Splitting technique The optical splitter can be obtain by changing the value of the refractive index in z axis Refractive index profile of the intensity splitter 1x8 .XZ cross section (y=0)

6 Splitting technique We use a new technique based on air holes with different sizes. This technique describes the relationship between the distances between neighboring cores and air hole size. By optimization of selecting air hole diameter which corresponds to the distance between the cores we can neglect the other coupling coefficients.

7 PCF Design d is the hole diameter of large air-holes
Silica d is the hole diameter of large air-holes pitch- distance between two air holes d', d'' are the hole diameter of small air-holes. The coupling coefficients are: , are distances between cores.

8 Refractive index profile of the intensity splitter 1x16:
(b) (c) Refractive index profile of the intensity splitter 1x16: (a) the xy plane. (b) the xz plane. (c) the yz plane

9 Coupled-mode equations
Since the structure is symmetrical and cores are identical the amplitudes fulfill: The coupling characteristics can be describe:

10 Physical conditions In order to obtain a complete transfer of the energy from core 0 to the other cores the following condition should take place: This conditions depends on the geometrical values ​​of the PCF structure. we perform optimizations of the geometric values ​​in order to obtain the required conditions.

11 Simulation Results We solve the PCF structure using RSoft Photonics CAD Suite software which is based on BPM. first step, we launch an optical signal at wavelength of 1.55m into the central core. second step, we calculated the output power of the 16 channels along different axial positions (different values ​​of z). Finally we found the appropriate value for z that satisfies the physical conditions.

12 Simulation (a) (b) The intensity splitting 1x16 of the optical signal simulation of 2D xy cross sections: (a) z=0. (b) z=3.582mm

13 Simulation The propagation distance z as a function of the normalized power propagation

14 Conclusions The energy of the optical signal at 1550nm wavelength can be divided into sixteen cores in a PCF structure with dimensions of 60m x 60m x 3.582mm, where the ratio of the total power in each port is about 6.25% of the overall injected power. The fabrication of this PCF structure is feasible and it is significantly easier to fabricate in comparison to previously published approaches for PCF based couplers/splitters. The concept can be extended for designing PCF splitter/couplers with higher splitting ratio such as: 1x32 and 1x64.

Download ppt "Dror Malka and Zeev Zalevsky"

Similar presentations

Ads by Google