Download presentation

Presentation is loading. Please wait.

1
**Environmental Controls I/IG**

Lecture 11 Degree Days Heating Loads Annual Fuel Consumption Simple Payback Analysis

2
Heating Degree Days Balance Point Temperature (BPT): temperature above which heating is not needed DDBPT= BPT-TA

3
**Sample Calculation January TA=28ºF DD65=65-28= 37 Degree-days/day**

x 31 days = 1,147 degree-days S: p. 1524, T.C.15

4
Heating Loads

5
**Heating Loads Computed for worst case scenario: Do not include:**

Pre-dawn at outdoor design dry bulb temperature Do not include: Insolation from sun Heat gain from people, lights, and equipment Infiltration in nonresidential buildings Ventilation in residential buildings SR-3

6
**Outdoor Dry Bulb Temperature**

Use Winter Conditions S: p. 1496, T.B.1

7
**Determine Temperature Difference**

Indoor Dry Bulb Temperature (IDBT): 68ºF Outdoor Dry Bulb Temperature (ODBT): 8ºF ΔT=IDBT-ODBT=68ºF - 8ºF = 60ºF

8
**Determine Envelope U-values**

Calculate ΣR and then find U for walls, roofs, floors. Obtain U values for glazing from manufacturer or other reference

9
**Determine Area Quantities**

Perform area takeoffs for all building envelope surfaces on each facade: gross wall area window area door area net wall area 1200 sf - 100’ 368 sf - 64 sf 768 sf 12’ 4’ 4’ 8’ Elevation

10
Floor Slabs For floor slabs at grade, there are two heat loss components: slab to soil losses edge losses S: p. 1583, T.E.11

11
**TI=Indoor Air Temperature TGW=Ground Water Temperature**

Slab to Soil Losses Q=Uslab x 0.5 x Aslab x (TI-TGW) TI=Indoor Air Temperature TGW=Ground Water Temperature

12
**Edge Losses Method I Determine F2 based on heating degree days**

S: p. 1582, T.E.11

13
**Select F2 based on insulation configuration**

Slab Edge Losses Method II Select F2 based on insulation configuration S: 1583, T.E.12

14
**TI= Indoor air temperature TO=Outdoor air temperature**

Slab Edge Losses Q=F2 x Slab Perimeter Length x (TI-TO) where, TI= Indoor air temperature TO=Outdoor air temperature

15
**Heating Load Example Problem**

Building: Office Building Location: Salt Lake City ΔT=IDBT-ODBT=68-8=60ºF Building: 200’ x 100’ (2 stories, 12’-6” each) Uwall= Btuh/sf-ºF Uroof= Btuh/sf-ºF Uwindow= Btuh/sf-ºF Uslab= Btuh/sf-ºF Udoor= Btuh/sf-ºF

16
**Heating Load Example Problem**

Determine Building Envelope Areas (SF) Building: 200’ x 100’ (2 stories, 12’-6” each) N E S W Gross Wall 5,000 2,500 5,000 2,500 Windows 1, , Doors Net Wall 3,980 1,980 2,950 1,980 Roof/Floor Slab 20,000

17
**Heating Loads Insert roof values Insert wall values**

, , ,000 N , ,895 E , ,415 S , ,558 W , , ,555 Insert roof values Insert wall values Insert glass values Insert door values Insert floor values N , ,600 E ,300 S , ,200 W , ,400 ,320 1,320 N/A N/A N/A N/A SR-3

18
**TI=Indoor Air Temperature TGW=Ground Water Temperature**

Slab to Soil Losses Q=Uslab x 0.5 x Aslab x (TI-TGW) TI=Indoor Air Temperature TGW=Ground Water Temperature Ground Water= 53ºF ΔT=68ºF-53ºF=15ºF

19
**Heating Loads Insert floor values SR-3 0.025 20,000 60 30,000 30,000**

, , ,000 N , ,895 E , ,415 S , ,558 W , , ,555 Insert floor values N , ,600 E ,300 S , ,200 W , ,400 ,320 1,320 N/A N/A N/A N/A , ,000 SR-3

20
**Edge Losses Method I Determine F2 based on heating degree days**

S: p. 1582, T.E.11

21
Heating Degree Days Salt Lake City HDD65=5983 S: p. 1524, T.C.15

22
Edge Losses Method I Interpolate to find F2 at 5983 DD 0.50 F2? 0.56 S: p. 1582, T.E. 11

23
Interpolate to Find F2 Find difference in Degree Days: = =2083 Find difference in F2: F2?-0.50=x =0.06 Set up proportion, solve for x: 633/2083=x/0.06 x=0.018 F2?-0.50=0.018 F2?=0.518

24
Edge Losses Method I Interpolate to find F2 at 5983 DD 0.50 F2= 0.56 0.518 S: p. 1582, T.E.11

25
**Heating Loads Insert floor values SR-3 0.025 20,000 60 30,000 30,000**

, , ,000 N , ,895 E , ,415 S , ,558 W , , ,555 Insert floor values N , ,600 E ,300 S , ,200 W , ,400 ,320 1,320 N/A N/A N/A N/A , ,000 ,648 42,648 SR-3

26
Infiltration Residential buildings use infiltration to provide fresh air “Air change/hour (ACH) method” (see S: p.1601, T. E.27) or “Crack length method” (see S: p. 1603, T. E.28) Prone to subjective interpretation Vulnerable to construction defects Provides a relatively approximate result

27
**ASHRAE Standard 62-2001 (S: p. 1597-99, T.E.25)**

Ventilation Analysis Non-residential buildings use ventilation to provide fresh air and to offset infiltration effects. ASHRAE Standard (S: p , T.E.25) Estimates the number of people/1000 sf of usage type Prescribes minimum ventilation/person for usage type

28
**ASHRAE 62-2001 Defines space occupancy and ventilation loads**

S: p. 1598, T.E.25

29
**ASHRAE 62-2001 Defines space occupancy and ventilation loads**

S: p. 1598, T.E.25

30
**Ventilation Load — Sensible**

40,000 sf x 5people/1,000sf = 200 people 200 people x 17 cfm/person = 3,400 cfm 3,400 cfm x 60min/hr = 204,000cfh

31
**Heating Loads Input Ventilation Load—Sensible SR-3**

, , ,000 N , ,895 E , ,415 S , ,558 W , , ,555 Input Ventilation Load—Sensible N , ,600 E ,300 S , ,200 W , ,400 ,320 1,320 N/A N/A N/A N/A , ,000 ,648 42,648 204, ,320 SR-3

32
**Ventilation Load — Latent**

Determine ΔW WI= #H2O/#dry air -WO= #H2O/#dry air ΔW= #H2O/#dry air

33
**Heating Loads Input Ventilation Load — Latent SR-3**

, , ,000 N , ,895 E , ,415 S , ,558 W , , ,555 Input Ventilation Load — Latent N , ,600 E ,300 S , ,200 W , ,400 ,320 1,320 N/A N/A N/A N/A , ,000 ,648 42,648 204, ,320 204, SR-3

34
**Heating Load Total Load 504551 Btuh or 505 MBH 5.9 7.6 8.4 SR-3 14.7**

, , ,000 5.9 N , ,895 E , ,415 S , ,558 W , , ,555 Total Load Btuh or 505 MBH 7.6 N , ,600 E ,300 S , ,200 W , ,400 14.7 ,320 1,320 0.3 N/A N/A N/A N/A , ,000 ,648 42,648 8.4 204, 204, , 63.1 SR-3 504551

35
**Annual Fuel Consumption**

36
**Annual Fuel Usage (E) E= UA x DDBPT x 24 AFUE x V where:**

UA: heating load/ºF DDBPT: degree days for given balance point AFUE: annual fuel utilization efficiency V: fuel heating value

37
**Calculating UA QTotal= UA x ΔT UA= QTotal/ΔT From earlier example:**

QTotal=504,551 Btuh ΔT= 60ºF UA=504,551/60=8,409 Btuh/ºF

38
Determine AFUE Annual Fuel Utilization Efficiency of an electric heating system is 100% S: p. 258, T.8.7

39
**Determine Heat Content (V)**

Heat content is the quantity of Btu/unit Note: Natural Gas is sold in therms (100 cf) S: p. 255, T.8.5

40
**Annual Fuel Usage Example**

What is the expected annual fuel usage for a house in Salt Lake City if its peak heating load is 39,000 Btuh? UA=Q/ΔT UA=39,000/60= 650 Btuh/ºF

41
Determine AFUE Annual Fuel Utilization Efficiency of an electric heating system is 100% S: p.258, T.8.7

42
**Determine Heat Content (V)**

Heat content is the quantity of Btu/unit S: p. 255, T.8.5

43
**Annual Fuel Usage — Electricity**

E= UA x DDBPT x 24 AFUE x V EELEC =(650)(5,983)(24)/(1.0)(3,413) =27,347 kwh/yr If electricity is $0.0735/kwh, then annual cost = $2,010

44
**Annual Fuel Usage — Gas E= UA x DDBPT x 24 AFUE x V**

=1,111 therms/yr If gas is $0.41/therm, then annual cost = $456

45
**Simple Payback Analysis**

46
**Simple Payback Heating System Cost Comparison First Electricity 6,000**

($) Electricity 6,000 Oil 8,000 Gas 8,900

47
**Simple Payback Heating System Cost Comparison**

First Annual Incremental Incremental Simple Cost Fuel Cost First Cost Annual Savings Payback ($) ($/yr) ($) ($/yr) (yrs) Electricity 6,000 2, Oil 8,000 1,152 2, Gas 8, ,900 1, If money is available, select gas furnace system

Similar presentations

OK

Passive House Seminar for Professionals from the Building Sector

Passive House Seminar for Professionals from the Building Sector

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on water activity table Product mix ppt on nestle products Led based message display ppt on tv Ppt on natural resources and conservation in south Ppt on world population day 2012 Ppt on relations and functions for class 11th chemistry Ppt on human chromosomes how many Ppt on area of parallelogram with vertices Free ppt on roman numerals Ppt on hindu religion symbol