Download presentation

Presentation is loading. Please wait.

Published byCaden Sheriff Modified over 2 years ago

1
**Table of Contents The Nature of Force Friction and Gravity**

Newton’s First and Second Laws Newton’s Third Law Rockets and Satellites

2
**Learning Objectives Describe what a force is.**

Describe how balanced and unbalanced forces are related to an object’s motion.

3
**What is a Force? (No lab write-up)**

Goal: Determine more than one way to create a force reading using the force sensor. Results: What were the ways you used to create a force? How did or would you create a weak force? A stronger force? Can forces be negative? How did you get a negative force? Conclusions: Based upon these ways, what is a force? Does a force depend on direction? How do you know from the experiment? How else is a force described outside of direction?

4
**Combining Forces (Real World Examples + Tug-of-War Challenge)**

- The Nature of Force Combining Forces (Real World Examples + Tug-of-War Challenge) Do forces usually act alone? The combination of all forces acting on an object is called the net force.

5
**Unbalanced Forces - The Nature of Force**

Unbalanced forces acting on an object result in a net force and cause a change in the object’s motion.

6
**Balanced Forces - The Nature of Force**

Balanced forces acting on an object do not change the object’s motion.

7
**A force is… Always balanced.**

A push or a pull in a particular direction. A pull that pushes. What Jedi Knights possess.

8
**A force is measured by its**

Power only. Strength or magnitude only. Strength or magnitude and direction. Direction and its pull.

9
A sky diver experiences a 900 N downward force and a 200 N upward force. What is the net force (in the correct direction)? 700 N up 700 N down 1100 N up 1100 N down

10
**Which direction will the cart below move?**

The cart will not because the forces are balanced. Left because the net force is -90 N to the left. Right because the net force is 90 N to the right. Up because the cart is being pulled to the left and to the right.

11
**The two dogs in the picture below are pulling on a rope**

The two dogs in the picture below are pulling on a rope. The dog on the left is pulling at 200 N while the dog on the right is pulling at 200 N. What direction will the rope move? South because the forces are balanced. West because the dog on the left is pulling harder. East because the dog on the right is stronger. The rope will not move because the forces are balanced.

12
**Asking Questions - The Nature of Force**

Before you read, preview the red headings. In a graphic organizer like the one below, ask a what or how question for each heading. As you read, write answers to your questions. Question Answer What is a force? A force is a push or pull. What happens when forces combine? Forces combine to produce a net force.

13
**Click the SciLinks button for links on force.**

- The Nature of Force Links on Force Click the SciLinks button for links on force.

14
**End of Section: The Nature of Force**

15
**Noggin Knockers/Homework- p**

Noggin Knockers/Homework- p. 39: 1b, 1c, 2b, 2c (8 points total- 2 points each) 1 (1 point per part for 2 pts. total)- (A) Balanced forces do not affect an object’s motion because they cancel out. (B) Unbalanced forces will cause the object to move or change it’s motion. 2 (2 points)- Arrow (B) because it is longer. 3 (2 points)- 120 N N = 270 N downward (strength & direction) 4 (2 points)- 200 N – 100 N = 100 N to the right

16
Learning Objective Describe friction and identify the factors that determine the frictional force between 2 objects.

17
Friction Experiments Goal: Determine what 2 factors affect the frictional force between two objects. Also, determine how friction can be reduced. Hypothesis (x3): For Part 1, determine which surface (floor or rug) will produce the greatest frictional force. For Part 2, determine how the added weight will affect the frictional force. For Part 3, determine how adding wheels will affect the frictional force (w/o weights). Procedure (Use the Digits function, not the Graph function): Part 1- Push an upside-down go-car (wheels up) across the floor using the force sensor to determine the frictional force that needs to be OVERCOME so the car can move at a constant speed. Make sure you ZERO the sensor before you start pushing. Repeat the procedure above with the rug. Part 2- Add weight to the go cars and repeat Part 1. Part 3- After removing the weights, flip the go-car over so that the wheels are on the floor and repeat Part 1. Results: Organize your results for each part of the procedure.

18
**Friction Experiment Conclusions (in complete sentences):**

Which surface produced a greater frictional force? Explain why this is the case. What was the effect of extra weight on the frictional force? What was the effect of wheels on the frictional force? Make your claim/conclusion (make sure it relates to the goal below), and back it up with evidence from the experiment. Use your conclusions from #1 and #2 above for guidance. Goal: Determine what 2 factors affect the frictional force between two objects. Also, determine how friction can be reduced.

19
Friction Notes For friction notes, examine your conclusions from the Friction Experiment. Friction is a force that resists or inhibits the motion of objects when they move against each other. Also, you should know that the type of surface of an object and that how hard surfaces push together affect friction (you increased the 2nd variable in bold by adding more weight). Lastly, know how wheels affect friction as well as any other ways to reduce friction.

20
**Markie and Suzy are moving a safe across the floor**

Markie and Suzy are moving a safe across the floor. Which of the following describes the frictional force? Markie and Suzy both push the safe the same direction. The weight of the safe exerts a downward force. The floor pushes upward on the safe. There is some resistance going against the direction the safe is moving.

21
**Which change would require more force to pull the wooden block up the ramp?**

Glue sandpaper to the surface of the ramp. Reduce the mass of the wooden block. Restack the books so the thinnest book is on the bottom. Have the student use two hands.

22
**Which of the following would produce the greatest frictional force between 2 objects?**

A 100 kg wooden block sliding across a smooth table. A 200 kg wooden block sliding across a smooth table. A 100 kg wooden block sliding across a rug. A 200 kg wooden block sliding across a rug.

23
**The diagrams below show a person moving a 50-kilogram object up a ramp**

The diagrams below show a person moving a 50-kilogram object up a ramp. In which diagram is there the least amount of friction on the object? Diagram 1 Diagram 2 Diagram 3 Diagram 4

24
**The wheels and gears of machines are greased in order to decrease**

Potential energy. Output. Efficiency. Friction.

25
Learning Objectives Identify the factors that affect the gravitational force between two objects, and describe how they affect this force. Explain why objects accelerate during free fall (by describing how gravity affects falling objects).

26
**Gravitational Pull Experiment- Part 1 (write conclusions in your notes)**

Goal- Determine what affects the gravitational force or attraction between 2 objects by using magnets & Planet Data. Background: This brief experiment is only a MODEL of the gravitational pull between 2 objects. Results: Determine what happens to the force of attraction between the magnets as they get closer together. Conclusion: What affects the gravitational pull between 2 objects?

27
**Gravity - Friction and Gravity**

The force of gravity on a person or object at the surface of a planet is known as weight. Right now you are experiencing 1G, which is the amount of force due to the gravity on Earth. When you ride on a rollercoaster, you will experience more than 1G. Sometimes, you are feeling 3, 4, or 5 G’s due to the acceleration of the rollercoaster.

28
**Gravitational Pull Experiment- Part 2: Mass & Gravitational Pull of the Planets**

Name Mass (X 1024 kg) Gravitational force on the surface (relative to Earth) Pluto Moon Mars Earth Jupiter Sun ,989, Conclusion: So, what else affects the gravitational pull between 2 objects?

29
**Gravity - Friction and Gravity**

Two factors affect the gravitational attraction between objects: mass and distance.

30
**Which two factors determine the gravitational attraction between two objects?**

time and temperature shape and orbital speed color and hardness mass and distance apart

31
**The gravitational force between the Moon and Earth depends on**

Their masses only. Their diameters only. Their masses and how far apart they are. Their diameters and how far apart they are.

32
**Suppose three new planetary bodies are discovered near Earth**

Suppose three new planetary bodies are discovered near Earth. They all have the same mass. Planet A is 9 million miles away, Planet B is 7 million miles away, and Planet C is 30 million miles away. Which planet would Earth have the greatest gravitational attraction for? Planet A Planet B Planet C Planet D

33
**On which planet in our solar system would you feel the most gravitational pull?**

Earth Saturn Jupiter Mars Name Mass (X 1024 kg) Gravitational force on the surface (relative to Earth) Earth Mars Jupiter Pluto Moon Sun ,989,

34
**Why does the Sun have the greatest gravitational pull?**

It has the lowest mass. It has the most mass. It’s the closest to the Earth. It’s gravitational force is 7.1 times that of Earth. Name Mass (X 1024 kg) Gravitational force on the surface (relative to Earth) Earth Mars Jupiter Pluto Moon Sun ,989,

35
**Suppose a new planet was discovered that had a mass of 4**

Suppose a new planet was discovered that had a mass of 4.00 (x 1024 kg). What would be a possible gravitational force for this new planet? 0.85 0.3 1.4 8.0 Name Mass (X 1024 kg) Gravitational force on the surface (relative to Earth) Pluto Moon Mars Earth Jupiter Sun ,989,

36
**Motion Test: Commonly Missed Problems**

37
**Sneaker Traction Friction Experiment (Just record your group’s data)**

Goal: Determine which sneakers have the best traction (by examining the frictional force). Background: What will you be measuring that indicates good traction? Procedure: Same as Part 1 from the previous Friction Experiment (minus the rug). Record the frictional force on the SMART Board for the group member who had the shoes with the most traction. Results: Organize your results into a table for your group. Add the other groups’ data into your table. Conclusion: Make your claim (related to the goal) & back it up with evidence and relate it to what affects the frictional force between 2 objects from the previous experiment.

38
Learning Objectives Explain why objects accelerate during free fall (by describing how gravity affects falling objects).

39
**Acceleration Due to Gravity (No lab write-up)**

Goal: Determine the acceleration due to gravity for objects in free fall. Pre-Lab Demos (Dropping Paper and a Ball): Determine if objects of different masses accelerate slower or faster by observing when they hit the ground. Does the mass of an object change how fast it free falls? Why or why not? So, does the force due to gravity affect all objects on Earth the same? Hypothesis: We will do the hypothesis as a class verbally. Procedure: Use a motion sensor from a high height (on the Digits and Acceleration settings) & drop a ball (AFTER HITTING PLAY) to determine the Acc. due to Gravity. Repeat 3-5 times and RECORD the acceleration right before the ball hits the ground (hit play to pause the data collection). Results/Conclusions (Make sure you can answer these questions): What is the acceleration due to gravity from the experiment? The actual value is m/s/s. How close were you to the actual value? What may cause the ball to not accelerate as quickly (what could slow it down)?

40
**Free Fall = When gravity is the only force acting on the object**

- Friction and Gravity Free Fall = When gravity is the only force acting on the object Use the graph to answer the following questions.

41
**Free Fall - Friction and Gravity Calculating:**

Calculate the slope of the graph. What does the slope tell you about the object’s motion? The slope is 9.8. The speed increases by 9.8 m/s each second. This is the actual acceleration due to gravity on Earth without any air resistance.

42
**Free Fall - Friction and Gravity Predicting:**

What will the speed of the object be at 6 seconds? 58.8 m/s

43
**Free Fall - Friction and Gravity Drawing Conclusions:**

Suppose another object of the same size but with a greater mass was dropped instead. How would the speed values change? The speed values would not change.

44
**Air Resistance - Friction and Gravity**

Falling objects with a greater surface area experience more air resistance.

45
Two objects are dropped from the top of a tall building and there is no wind. One object is a 16 lb. bowling ball and the other is a basketball. What will be each object’s approximate acceleration when they are dropped? 9.8 m/s/s for the basketball and 8.0 m/s/s for the bowling ball. 0.0 m/s/s for both objects. 9.8 m/s/s for both objects. 9.8 m/s/s for the bowling ball and 4.9 m/s/s for the basketball

46
**When gravity is the only force acting on an object, then that object is**

Moving at a constant velocity. Not accelerating. In free fall. Moving quickly.

47
Suppose a large rock is dropped straight down from a high cliff while the other is pushed out from the top of the cliff. Which one will land first and WHY? The rock that is pushed out from the cliff will hit first because it had an extra force to make it fall faster. The rock that’s dropped straight down will hit first because it has a shorter path to travel. They will both hit the ground at the same time because gravity acts the same on all free-falling objects. Neither will hit the ground.

48
**Why will a leaf fall slowly to the ground while other objects fall quickly?**

It’s lighter. Air resistance Gravity They just do.

49
**Air resistance is a type of**

band. gravity. friction. Law.

50
**Comparing and Contrasting**

- Friction and Gravity Comparing and Contrasting As you read, compare and contrast friction and gravity by completing a table like the one below. Friction Gravity Pulls objects toward one another Effect on motion Opposes motion Types of surfaces involved, how hard the surfaces push together Depends on Mass and distance Measured in Newtons Newtons

51
**Click the SciLinks button for links on friction.**

- Friction and Gravity Links on Friction Click the SciLinks button for links on friction.

52
**Click the Video button to watch a movie about free fall.**

- Friction and Gravity Free Fall Click the Video button to watch a movie about free fall.

53
**End of Section: Friction and Gravity**

54
**Noggin Knockers/Hwk.- p. 50: 1b, 2b, 2c, 3a, 3b, 3c (10 pts.)**

1 (a)- Push = Arrow A (1 pt.) (b) Friction = Arrow C (1 pt.) (c) Gravity = Arrow D (1 pt.) (d) 300 N to the left. (2 points- 1 pt. for value, 1 pt. for direction) 2 (a) More mass = Greater Grav. Attraction (1 point) (b) Closer together/less distance = Greater Grav. Attraction (1 point) 3 (1 point)- An object’s mass does not affect its acceleration during free fall. 4a (1 point)- Force that changes = air resistance/friction 4b (1 point)- Force that stays constant = gravity

55
Learning Objectives Apply Newton’s 1st Law of Motion to real world examples. Key Term: Inertia Apply Newton’s 2nd Law of Motion to real world examples. Key Terms: Force, Mass, Acceleration

56
**Introduction to Newton’s 1st Law**

What happens to your body when a car or rollercoaster first takes off quickly? What happens to your body when a car or rollercoaster stops abruptly?

57
**Newton’s 1st Law of Motion**

Objects in Motion (Pencil on a cart being stopped): Stay in motion until a force stops them from moving. Objects at Rest (Tablecloth Demo): Stay at rest until an outside force causes the object to move. Inertia: The tendency of an object to stay in motion or stay at rest. What does inertia depend on? Example- Which has more inertia a toy car or a large truck? As mass increases, inertia increases. Newton’s 1st Law: An object in motion will stay in motion unless acted on by an unbalanced force. Also, an object at rest will remain at rest unless acted on by an unbalanced force.

58
**Why is it difficult to stop a large fast-moving football player?**

He has a small inertia. An object at rest will stay at rest until an unbalanced force causes it to move. An object in motion will stay in motion until an unbalanced force acts on it. Because he plays for Notre Dame.

59
**Why is it difficult to move heavy objects from rest?**

Because they are at rest. An object at rest tends to remain at rest until an unbalanced force acts on it. An object in motion will remain in motion until an unbalanced force acts on it. Because it’s light in weight.

60
**The tendency of an object to remain at rest or remain in motion is called ___________**

Mass. Inertia. Newton’s 1st Law. Density.

61
**Which of the following affects the amount of inertia an object possesses?**

Mass Volume Gravity Friction

62
**Which of the following has the most inertia?**

A table Grandma A Toyota Yaris A freight train

63
**What Affects Force? (Newton’s 2nd Law)**

Suppose you push two people who have the same mass. You push with more force on one person vs. the other. Which person would accelerate faster from rest? Suppose you push two people and they both accelerate at the same rate. However, one person has much more mass than the other. Which one required more force to accelerate? Suppose you push two people with the same amount of force. However, one person has more mass than the other. Which person would accelerate at a faster rate?

64
**Newton’s 2nd Law Experiment**

Goal: Determine the relationship between Force, mass, and acceleration for an object (a Go-car in this case). Hypothesis (x 3): What has to happen to the force required to move an object if acceleration increases (& mass is constant)? What would happen to the force if mass increases (& acceleration is constant)? What would happen to the acceleration if mass increases (& the force is constant)? Procedure (use Digits): Part 1- Keeping mass on the cart constant, determine the relationship between force and acceleration. (Determine the force needed to accelerate the car slowly and compare to the force needed to accelerate the car quickly) Part 2- Keeping acceleration constant, determine the relationship between mass and force. (Determine the force needed to move the car from rest to a constant speed with weights and compare to force required without weights at a constant speed). This can be tricky to achieve so as long as the acc. Is close it’s okay. Part 3- Keeping force constant, determine the relationship between mass and acceleration. (Determine the acceleration with and without weights but keep the force the same) Results: Organize your results in a table for EACH part.

65
**Newton’s 2nd Law Experiment**

Conclusions (Using your data…) What was the relationship for each part? For example, as acceleration increased, the force (increased or decreased). Use data from the experiment back up your claims. Force and acceleration (constant mass)- from Part 1 Data Force and mass (constant acceleration)- from Part 2 Data Mass and acceleration (constant force)- from Part 3 Data Which of the equations below represents the relationships you discovered? Choose 2- one from (a) or (b) and one from (c) or (d). [F is force, m is mass, and a is acceleration] F = m/a F =m x a a = F x m a = F/m

66
**F = m x a Acceleration due to gravity & Constant force**

Force, mass, and acceleration units: 1 N = 1 kg x m/s/s Acc. Due to Gravity a = =

67
**Calculating Force - Newton’s First and Second Laws**

A speedboat pulls a 55-kg water-skier. The force causes the skier to accelerate at 2.0 m/s2. Calculate the net force that causes this acceleration. Read and Understand What information have you been given? Mass of the water-skier (m) = 55 kg Acceleration of the water-skier (a) = 2.0 m/s2

68
**Calculating Force - Newton’s First and Second Laws**

A speedboat pulls a 55-kg water-skier. The force causes the skier to accelerate at 2.0 m/s2. Calculate the net force that causes this acceleration. Plan and Solve What quantity are you trying to calculate? The net force (Fnet) = __ What formula contains the given quantities and the unknown quantity? a = Fnet/m or Fnet = m X a Perform the calculation. Fnet = m X a = 55 kg X 2.0 m/s2 F = 110 kg • m/s2 F = 110 N

69
**Calculating Force - Newton’s First and Second Laws**

A speedboat pulls a 55-kg water-skier. The force causes the skier to accelerate at 2.0 m/s2. Calculate the net force that causes this acceleration. Look Back and Check Does your answer make sense? A net force of 110 N is required to accelerate the water-skier. This may not seem like enough force, but it does not include the force of the speedboat's pull that overcomes friction.

70
**Calculating Force Practice Problem - Newton’s First and Second Laws**

What is the net force on a 1,000-kg object accelerating at 3 m/s2? 3,000 N (1,000 kg X 3 m/s2)

71
**Calculating Acceleration**

- Newton’s First and Second Laws Calculating Acceleration Practice Problem What is the acceleration of an object in free fall with a weight of 98 N and a mass of 10 kg? Does your answer make sense? Note that weight is the force due to gravity! a = F/m a = 98 N/10 kg = 9.8 m/s2

72
**Calculating Acceleration**

- Newton’s First and Second Laws Calculating Acceleration Practice Problem What is the acceleration of a 100 kg couch being pulled across the floor with a force of 200 N? a = F/m a = 200 N/100 kg = 2 m/s2

73
Noggin Knockers

74
**Calculating Acceleration**

- Newton’s First and Second Laws Calculating Acceleration Practice Problem Determine the amount of force required to accelerate a 1000 kg roller coaster at 5 m/s/s? F = m x a F = 1000 kg x 5 m/s/s = 5000 N or 5000 kg x m/s/s 74

75
**Calculating Acceleration**

- Newton’s First and Second Laws Calculating Acceleration Practice Problem Determine the weight of 50 kg person. Hint- You should already know the acceleration since weight is the force of gravity acting on your body. F = m x a F = 50 kg x 9.8 m/s/s = 490 N 75

76
**Calculating Acceleration**

- Newton’s First and Second Laws Calculating Acceleration Practice Problem What is the acceleration of a 2 kg ball thrown with a force of 20 N? a = F/m a = 20 N/2 kg = 10 m/s2 76

77
**Which of the following best describes the relationships between force, mass, and acceleration?**

As mass decreases, the net force will increase if the acceleration remains constant. As mass and acceleration increase together, so will the net force. As mass increases so will the acceleration, but force will remain constant. As acceleration increases and the mass remains constant, the net force will decrease.

78
**Suppose you are pushing a car with a certain amount of force**

Suppose you are pushing a car with a certain amount of force. What will happen to the car’s acceleration if the mass of the car increases? Assume the amount of applied force remains the same. The acceleration will increase. The acceleration will decrease. The acceleration will remain the same. There is not enough information from the problem.

79
**Suppose a small car strikes a wall**

Suppose a small car strikes a wall. Which of the following would exert the same amount of force as the car? A truck that’s twice as heavy and has twice the acceleration of the car. A truck that’s half as heavy with the same acceleration of the car. A truck that’s the same mass with half of the acceleration of the car. A truck that’s twice as heavy with half of the acceleration of the car.

80
How much force does a 100 kg Notre Dame football player exert when he accelerates at 5 m/s/s into a Nittany Lion? 500 N 20 N 100 N 5 N

81
**Determine the amount of force exerted on a 10 kg dumbbell in free-fall.**

It cannot be determined.

82
**A force of 500 N is exerted on a 100 kg safe**

A force of 500 N is exerted on a 100 kg safe. What is the safe’s acceleration? 0.2 m/s/s 50,000 m/s/s 9.8 m/s/s 5 m/s/s

83
**Newton’s First and Second Laws**

Outlining As you read, make an outline about Newton’s first and second laws. Use the red headings for the main topics and the blue headings for the subtopics. Newton’s First and Second Laws Newton’s First Law of Motion Inertia Inertia Depends on Mass The Second Law of Motion Changes in Force and Mass

84
**Click the PHSchool.com button for an activity**

- Newton’s First and Second Laws More on Newton’s Laws Click the PHSchool.com button for an activity about Newton’s laws.

85
**End of Section: Newton’s First and Second Laws**

86
**Noggin Knocker Calculations**

87
**Homework: p. 54 (1a, 1c, 2 all, and 3)**

1a- An object will remain at rest or remain in motion until acted on by an unbalanced force. 1c- Your body wants to remain at rest. 2a- Examples: A force is required to get an object to accelerate, the force an object exerts is equal to its mass multiplied its acceleration, etc. 2b- Double the mass. 2c- Greater mass means more force is required to get the car to accelerate. 3- F = m x a = 800 kg x 5 m/s/s = 4000 N

88
**Noggin Knocker Calculations**

89
**Noggin Knockers/Hwk. (8 pts.- 2 pts each)**

1- Your body wants to remain at rest. 2- Double the mass. 3- Greater mass means more force is required to get the car to accelerate. 4- F = m x a = 800 kg x 5 m/s/s = 4000 N

90
Learning Objectives Apply Newton’s 3rd Law of Motion to real world examples.

91
Newton’s 3rd Law Balloon Race Activity: Determine what makes the balloon propel across the room based upon the forces involved. Newton’s 3rd Law: For every action, there is an equal and opposite reaction. What are the action-reaction forces for the following: Rocket taking off? Punching a wall? Jumping from a high height to the ground? Hammering a nail?

92
**Forces on an object moving to the left**

Reaction Force/Floor or air pushing up Friction Push or Pull Gravity

93
**Which of the following is an example of Newton’s 3rd Law of Motion?**

When you do push-ups, you won’t stop until an unbalanced force causes you to stop. The net force you exert when doing a push-up is equal to your body mass multiplied by the acceleration due to gravity. When you do a push-up, an equal and opposite force pushes back on your body or hands. What’s a push-up?

94
**What direction will the contraption shown below go when the string is burned?**

left right up down

95
**Why will the contraption below move to the right?**

Friction is going to the left The rubber band snaps to the left, so the equal and opposite reaction is for the wooden platform to move to the right. Gravity pulls the wooden platform to the right when the rubber band snaps. The pencils cause the wooden platform to move to the right because friction acts in the opposite direction.

96
**If you add mass to the wooden platform, what effect would that have on the distance it travels?**

The distance would increase. The distance would decrease. The distance would not change. It would travel the same distance in the opposite direction.

97
Learning Objectives Explain how an object’s momentum is conserved & be able to calculate momentum. State the law of conservation of momentum.

98
**Conservation of Momentum**

Momentum- Use what you think momentum is and modify your definition based upon what is discussed in class (if needed). Newton’s Cradle: Is the total momentum lost or transferred for this activity? How do you know? Bouncing Sports Balls: What makes the sports balls on top bounce as high as they do? Colliding Cars with Tape: Is the total momentum lost or transferred for this activity? How do you know? Be sure to think about how the direction of the cars affect this experiment.

99
**Conservation of Momentum**

- - Newton’s Third Law Conservation of Momentum Law of the Conservation of Momentum (mass in motion): The total momentum is conserved (or does not change) for any group of objects, unless outside forces (such as friction) act on the objects.

100
**Relationship between Momentum, Mass, & Velocity**

What causes an object’s momentum to increase? How does velocity affect momentum? How does mass affect momentum? Momentum = m x v

101
**Calculating Momentum - Newton’s Third Law**

Which has more momentum: a 3.0-kg sledgehammer swung at 1.5 m/s or a 4.0-kg sledgehammer swung at 1.0 m/s? Read and Understand What information have you been given? Mass of smaller sledgehammer = 3.0 kg Velocity of smaller sledgehammer = 1.5 m/s Mass of larger sledgehammer = 4.0 kg Velocity of larger sledgehammer = 1.0 m/s

102
**Calculating Momentum - Newton’s Third Law**

Which has more momentum: a 3.0-kg sledgehammer swung at 1.5 m/s or a 4.0-kg sledgehammer swung at 1.0 m/s? Plan and Solve What quantities are you trying to calculate? The momentum of each sledgehammer = __ What formula contains the given quantities and the unknown quantity? Momentum = Mass X Velocity Perform the calculation. Smaller sledgehammer = 3.0 kg X 1.5 m/s = 4.5 kg x m/s Larger sledgehammer = 4.0 kg X 1.0 m/s = 4.0 kg x m/s

103
**Calculating Momentum - Newton’s Third Law**

Which has more momentum: a 3.0-kg sledgehammer swung at 1.5 m/s or a 4.0-kg sledgehammer swung at 1.0 m/s? Look Back and Check Does your answer make sense? The 3.0-kg hammer has more momentum than the 4.0-kg one. This answer makes sense because the 3.0-kg hammer is swung at a greater velocity.

104
**The total momentum before and after a collision (in the absence of friction) is always**

Constipated. Conserved. Different. Reserved.

105
**Suppose the total momentum before 2 cars collide is 200 kg x m/s**

Suppose the total momentum before 2 cars collide is 200 kg x m/s. What is total momentum after the collision (in the absence of friction)? 100 kg x m/s 0 kg x m/s 200 kg x m/s There is not enough information in the question.

106
Which of the following would have the most momentum: a 1000 kg car moving at 10 m/s or a 1000 kg car moving at 20 m/s? The car moving at 10 m/s. The car moving at 20 m/s. They have the same momentum. The momentum cannot be determined.

107
Which of the following has the most momentum: bowling ball moving at 5 m/s or a tennis ball moving at 5 m/s? The tennis ball. The bowling ball. They have the same momentum. I was not paying attention.

108
**What outside force causes momentum to not be “conserved” for almost every collision?**

Gravity Friction Normal Weight

109
**Which has more momentum: a 1000 kg car moving at 20 m/s or a 2000 kg truck moving at 10 m/s?**

The car The truck They both have the same momentum. Football players from Notre Dame.

110
**Forces Practice Test 1- Person shoving their friend**

2- Unbalanced forces CHANGE an object’s motion. 3 & 4- Friction N to the right (200 N – 50 N = 150 N) 6- 50 N = Frictional Force; 300 N down = Gravitational Force; 300 N up = Reaction force (from the action of gravity pulling downward) 7- Shoes with lots of tread, sandpaper used in shop class, etc. 8- Air Resistance would change; Gravity would remain the same 9- Increase mass- Greater Grav. Pull; Lower distance- Greater Grav. Pull 10- Any number from 1.1 to 2.3 (between Earth and Jupiter’s Grav. pull) 11- Heavy objects- High Inertia and like to stay at rest more than lighter ones & are more difficult to stop moving. Seatbelts prevent your body from moving too far forward (wanting to stay in motion) when brakes are used

111
Forces Practice Test 12- ½ the acceleration = ½ the force, so ½ of 20 N = 10 N 13- F = m x a = 50 kg x 2 m/s/s = 100 N m/s/s 15- 5 kg because it is lighter 16- Action- Striking the board; Reaction- Board pushes back onto your hand. 17- Increase the object’s velocity and mass 18- Momentum is the same before and after (w/o friction). 19- Friction

112
**Noggin Knockers/Hwk. (10 points- 2 pts. each)**

1- You move backwards (or away). 2- Action force = you pushing the other person; Reaction force = the other person’s body pushes back onto you. 3- 0 kg x m/s kg x m/s 5- Dolphin because it is moving faster. Momentum of dolphin = m x v = 250 kg x 4 m/s = 1000 kg x m/s Momentum of manatee = 350 kg x 2 m/s = 700 kg x m/s

113
**Noggin Knockers & Hwk: p. 61- 1a, 1b, 1c, 2a, 2c, 3a, 3b, & 5**

1a- For every action there is an equal and opposite reaction. 1b- The reaction force is EQUAL and OPPOSITE to the action force. 1c- You would move the direction the ball is moving. 2a- Momentum is the mass x velocity of an object; 2b- The momentum of a parked car is 0 kg x m/s. 2c- Greater speeds means a greater momentum, which makes it more difficult to stop. 3a- The total momentum is the same before and after a collision (w/o friction). 3b kg x m/s 5- Momentum of dolphin = m x v = 250 kg x 4 m/s = 1000 kg x m/s Momentum of manatee = 350 kg x 2 m/s = 700 kg x m/s

114
**Momentum Activity - Newton’s Third Law**

Click the Active Art button to open a browser window and access Active Art about momentum.

115
**Calculating Momentum Practice Problem - Newton’s Third Law**

A golf ball travels at 16 m/s, while a baseball moves at 7 m/s. The mass of the golf ball is kg and the mass of the baseball is 0.14 kg. Which has the greater momentum? Golf ball: kg X 16 m/s = 0.72 kg•m/s Baseball: 0.14 kg X 7 m/s = 0.98 kg•m/s The baseball has greater momentum.

116
**Calculating Momentum Practice Problem - Newton’s Third Law**

What is the momentum of a bird with a mass of kg flying at 15 m/s? 0.27 kg•m/s (0.018 kg X 15 m/s = 0.27 kg•m/s)

117
**Conservation of Momentum**

- Newton’s Third Law Previewing Visuals Before you read, preview Figure 18. Then write two questions that you have about the diagram in a graphic organizer like the one below. As you read, answer your questions. Conservation of Momentum Q. What happens when two moving objects collide? A. In the absence of friction, the total momentum is the same before and after the collision. Q. What is the momentum of an object? A. Its mass multiplied by its velocity

118
**End of Section: Newton’s Third Law**

119
**What Is a Satellite? - Rockets and Satellites**

A projectile follows a curved path because the horizontal and vertical motions combine.

120
**What Is a Satellite? - Rockets and Satellites**

The faster a projectile is thrown, the father it travels before it hits the ground. A projectile with enough velocity moves in a circular orbit.

121
**What Is a Satellite? - Rockets and Satellites**

Depending on their uses, artificial satellites orbit at different heights.

122
**Identifying Main Ideas**

- Rockets and Satellites Identifying Main Ideas As you read the section “What Is a Satellite?” write the main idea in a graphic organizer like the one below. Then write three supporting details that further explain the main idea. Main Idea A satellite stays in orbit due to… Detail Detail Detail its inertia Earth’s gravity Earth’s shape

123
**End of Section: Rockets and Satellites**

124
**Graphic Organizer Type of Friction Occurs When Example Static Sliding**

Friction between an unmoving book and desk An object is not moving Static Two solid surfaces slide over each other Sliding Rubber pads on a bicycle’s brakes Rolling An object rolls across a surface Ball bearings in skateboard wheels A solid object moves through a fluid Fluid Air resistance

125
**End of Section: Graphic Organizer**

Similar presentations

Presentation is loading. Please wait....

OK

Section 1 Gravity and Motion

Section 1 Gravity and Motion

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on self management skills Ppt on tamper resistant fasteners Download ppt on height and distance for class 10 Ppt on electricity for class 10 download Ppt on blood stain pattern analysis publications Ppt on alternative fuels for i.c engine Ppt on principles of object-oriented programming in java Ppt on bluetooth free download Download ppt on famous indian mathematicians Ppt on wimax