Presentation is loading. Please wait.

Presentation is loading. Please wait.

TAFE NSW -Technical and Further Education Commission www.highered.tafensw.edu.au ENMAT101A Engineering Materials and Processes Associate Degree of Applied.

Similar presentations


Presentation on theme: "TAFE NSW -Technical and Further Education Commission www.highered.tafensw.edu.au ENMAT101A Engineering Materials and Processes Associate Degree of Applied."— Presentation transcript:

1 TAFE NSW -Technical and Further Education Commission ENMAT101A Engineering Materials and Processes Associate Degree of Applied Engineering (Renewable Energy Technologies) Lecture 15 – Cast Iron

2 TAFE NSW -Technical and Further Education Commission Cast Iron EMMAT101A Engineering Materials and Processes Reference TextSection Higgins RA & Bolton, Materials for Engineers and Technicians, 5th ed, Butterworth Heinemann Ch 15 Additional ReadingsSection

3 TAFE NSW -Technical and Further Education Commission Cast Iron EMMAT101A Engineering Materials and Processes Note: This lecture closely follows text (Higgins Ch15)

4 TAFE NSW -Technical and Further Education Commission Cast Iron (Higgins 15.1) EMMAT101A Engineering Materials and Processes READ HIGGINS 15.1 Ordinary cast iron is similar in composition to the crude pig iron produced by the blast-furnace. Cast Iron is still important today; It is cheap because it is close to the composition of ordinary pig iron. Mechanical rigidity and strength under compression are good. It machines with ease when a suitable composition is selected. Easy to cast because very fluid High-duty cast irons: e.g. spheroidal-graphite irons are strong, whilst malleable irons are tough.

5 TAFE NSW -Technical and Further Education Commission Cast Iron (Higgins 15.1) EMMAT101A Engineering Materials and Processes Cast Iron in the Iron-Carbon equilibrium diagram. se-trans/2001/adi/cast.iron.html

6 TAFE NSW -Technical and Further Education Commission Composition of cast irons (Higgins 15.2) EMMAT101A Engineering Materials and Processes Ordinary cast irons contain the following elements, Carbon %, (as graphite: grey CI, or iron carbide: white CI) Silicon %, (breaks down Fe3C, prefers grey CI) Sulphur up to 0.1%, (encourages Fe3C, but embrittlement) Manganese %, (toughens by reversing Sulphur, modify ferrite) Phosphorus up to 1.0%, (Brittle: keep to minimum, raise fluidity)

7 TAFE NSW -Technical and Further Education Commission Composition of cast irons (Higgins 15.2) EMMAT101A Engineering Materials and Processes Higgins Figure 15.2 The effects of silicon content on the structure of cast iron. White cast iron

8 TAFE NSW -Technical and Further Education Commission Composition of cast irons (Higgins 15.2) EMMAT101A Engineering Materials and Processes University of Cambridge ms.ac.uk/miclib/m icrograph_record. php?id=797 Source: am.ac.uk/phase- trans/2001/adi/ca st.iron.htmlhttp://www.msm.c am.ac.uk/phase- trans/2001/adi/ca st.iron.html. White cast iron

9 TAFE NSW -Technical and Further Education Commission Composition of cast irons (Higgins 15.2) EMMAT101A Engineering Materials and Processes Higgins Figure 15.2 The effects of silicon content on the structure of cast iron. Fine grey iron

10 TAFE NSW -Technical and Further Education Commission Composition of cast irons (Higgins 15.2) EMMAT101A Engineering Materials and Processes Higgins Figure 15.2 The effects of silicon content on the structure of cast iron. Coarse grey iron

11 TAFE NSW -Technical and Further Education Commission Composition of cast irons (Higgins 15.2) EMMAT101A Engineering Materials and Processes COARSE GREY IRON The aggregate of graphite flakes in gray cast iron, deeply etched, SEM. Mag. bar is 30 μm ce/article/pii/S Coarse grey iron

12 TAFE NSW -Technical and Further Education Commission Composition of cast irons (Higgins 15.2) EMMAT101A Engineering Materials and Processes COARSE GREY IRON Flake graphite close to the edge of mounted round specimen, OPTICAL. Mag. bar is 50 μm ce/article/pii/S Coarse grey iron

13 TAFE NSW -Technical and Further Education Commission The influence of cooling rate on the properties of a cast iron EMMAT101A Engineering Materials and Processes (Higgins 15.3) Adding silicon makes cementite unstable, decomposing slowly. If cooled rapidly cementite is trapped and forms white iron. If cooled slowly the cementite can decompose into graphite, forming grey iron. More slowly > coarser gray iron.

14 TAFE NSW -Technical and Further Education Commission The influence of cooling rate on the properties of a cast iron EMMAT101A Engineering Materials and Processes (Higgins 15.3) Deliberate “chilling” of a portion of the casting to produce a hard-wearing surface of white iron. The rest of the casting cools more slowly forming the tougher but softer grey iron structure.

15 TAFE NSW -Technical and Further Education Commission 'Growth' in cast irons EMMAT101A Engineering Materials and Processes (Higgins 15.4) When cast iron is used above 700°C, cementite decomposes into graphite and iron. This swells the iron, causing warping and cracks. To prevent this 'growth' in cast iron, cementite must be eliminated by using a high silicon content, like 5%. (Cementite decomposes during solidification)

16 TAFE NSW -Technical and Further Education Commission Ordinary cast irons EMMAT101A Engineering Materials and Processes (Higgins 15.5) Ordinary cast irons fall into two main groups: engineering irons and fluid irons. READ HIGGINS Engineering irons Higgins made-in-china.com

17 TAFE NSW -Technical and Further Education Commission EMMAT101A Engineering Materials and Processes Iron Bridge s.wikimedia.or g/wiki/File:Iro nbridge_6.jpg

18 TAFE NSW -Technical and Further Education Commission Ordinary cast irons EMMAT101A Engineering Materials and Processes (Higgins 15.5) Fluid irons Fluid irons are for decorative castings with intricate detail. High silicon content Si 2.5 to 3.5% High phosphorus content Pup to 1.5% Very brittle Cast Iron Decorative Panel gumtree.com.au

19 TAFE NSW -Technical and Further Education Commission Videos: EMMAT101A Engineering Materials and Processes Cast Iron Revival Keeps US Foundry Cooking (3:46 min) Ordinary Cast Irons

20 TAFE NSW -Technical and Further Education Commission High-duty cast irons EMMAT101A Engineering Materials and Processes (Higgins 15.6) Graphite flakes in grey cast are sharp, and so act like fractures (stress raisers). Strength and the toughness can be improved by turning the flakes into balls (spheroidal). READ HIGGINS Spheroidal-graphite (SG) cast iron Also 'nodular iron', or 'ductile iron‘ (USA). Graphite flakes converted to rounded globules by adding magnesium Mg (0.1%). Tensile strength up to 775 MPa. Ductile Iron Ductile iron is useful in applications where strength needs between aluminium and steel.

21 TAFE NSW -Technical and Further Education Commission EMMAT101A Engineering Materials and Processes Spheroidal-graphite (SG) cast iron Images: Pearlitic matrix Graphite nodules

22 TAFE NSW -Technical and Further Education Commission High-duty cast irons EMMAT101A Engineering Materials and Processes (Higgins 15.6) READ HIGGINS Compacted-graphite (CG) cast iron Between ordinary grey iron (flakes) and SG irons. CGI Engine Block CG Iron

23 TAFE NSW -Technical and Further Education Commission Malleable cast irons EMMAT101A Engineering Materials and Processes (Higgins 15.7) These are irons would ordinarily cast into a white iron (cementite structure). But with heat-treatment cementite converted into; Small spherical particles of carbon (the 'black-heart' process) Or Remove the carbon completely from the structure (the 'white-heart' process) READ HIGGINS Blackheart malleable iron Whiteheart malleable iron Pearlitic malleable iron Cast Iron Brake Disc ehow.com

24 TAFE NSW -Technical and Further Education Commission Alloy cast irons EMMAT101A Engineering Materials and Processes (Higgins 15.8) Alloying elements improve the mechanical properties of an iron, by: Refining the grain size. Stabilising hard carbides. Producing cast irons with a martensitic or austenitic structure. 1 Nickel: Graphitising effect on cementite (tends to grey iron). Refines grains for heavy sections – improving toughness. 2 Chromium: Forms chromium carbide (harder than cementite). Wear resistance. Less susceptible to cementite 'growth‘. 3 Molybdenum: Increases hardness and toughness of thick sections. 4 Vanadium: Increases strength and hardness. Better heat-resistance by stabilising carbides so that they do not decompose on heating. 5 Copper: Not much solubility but resists rusting.

25 TAFE NSW -Technical and Further Education Commission EMMAT101A Engineering Materials and Processes (Higgins)

26 TAFE NSW -Technical and Further Education Commission EMMAT101A Engineering Materials and Processes A note about Meehanite. Meehanite is a trademark for an engineering process to make many types of cast iron. When a foundry advertises that it produces "Meehanite Iron" this means the foundry is licensed by Meehanite Metal Corporation. The Meehanite is a series of specific processing steps, which, when followed, will produce, according to Meehanite, cast iron with uniform soundness, consistent physical properties and dependable performance in service. It covers most types of cast irons, and is not a specific alloy or material. Meehanite it really a type of quality accreditation with a name that sounds like a metallic grain.

27 TAFE NSW -Technical and Further Education Commission EMMAT101A Engineering Materials and Processes Wikipedia: Cast Iron Online Resources. Cast Iron Cast Iron Revival Keeps US Foundry Cooking (3:46 min)

28 TAFE NSW -Technical and Further Education Commission GLOSSARY Cast iron Grey iron Fine grey iron White iron Chills Growth of CI Fluid irons SG iron CG iron Malleable CI Blackheart malleable iron Whiteheart malleable iron Pearlitic malleable iron Alloy cast irons Carbide stabilizers Grain refiners EMMAT101A Engineering Materials and Processes

29 TAFE NSW -Technical and Further Education Commission QUESTIONS Moodle XML: Some questions in Steel 1.Define all the glossary terms. 2.Grey vs white cast Irons: Compare strengths and weaknesses of grey and white cast irons. What is the main factor that determines whether white or grey iron is formed? What constituents can be added to help ensure (a) white or (b) grey iron is formed? 3.Describe SG iron with the aid of a sketch and explain why it helps, and how it is generated. Compare it with grey iron. 4.Explain the difference between coarse and fine grey iron in terms of both the casting process and the material properties. 5.A large lathe bed needs to be tough and crack resistant but with a hard wear resistant sliding surface (ways). Investigate casting processes and select a suitable method. Determine an appropriate cast iron type and describe some methods of ensuring a hard metal surface along the ways. Explain why cast iron is still used for machine bases and frames even though this has been the standard method for more than a century. 6.Identify suitable cast iron for: Large water pipes, firebox grating for wood burning fire, suspension arm of a truck, diesel engine block, cam shaft, cooking pot. EMMAT101A Engineering Materials and Processes


Download ppt "TAFE NSW -Technical and Further Education Commission www.highered.tafensw.edu.au ENMAT101A Engineering Materials and Processes Associate Degree of Applied."

Similar presentations


Ads by Google