Presentation is loading. Please wait.

Presentation is loading. Please wait.

Copyright McGraw-Hill 20091 Chapter 24 Nonmetallic Elements and Their Compounds Insert picture from First page of chapter.

Similar presentations


Presentation on theme: "Copyright McGraw-Hill 20091 Chapter 24 Nonmetallic Elements and Their Compounds Insert picture from First page of chapter."— Presentation transcript:

1 Copyright McGraw-Hill Chapter 24 Nonmetallic Elements and Their Compounds Insert picture from First page of chapter

2 Copyright McGraw-Hill General Properties of Nonmetals Properties of nonmetals - more varied than those of metals Physical state –Gases: hydrogen, oxygen, nitrogen, fluorine, chlorine, and the noble gases –Liquid : bromine –Solids: All the remaining nonmetals Poor conductors of heat and electricity Exhibit either positive or negative oxidation numbers.

3 Copyright McGraw-Hill Metalloids - small group of elements have properties characteristic of both metals and nonmetals. More electronegative than metals Electronegativity increases from left to right across any period and from bottom to top in any group in the periodic table With the exception of hydrogen, the nonmetals are concentrated in the upper right-hand corner of the periodic table Compounds formed by a combination of metals with nonmetals tend to be ionic, having a metallic cation and a nonmetallic anion.

4 Copyright McGraw-Hill Nonmetals and Metalloids on the Periodic Table Nonmetals coded in blue and metalloids in orange..

5 Copyright McGraw-Hill Hydrogen Simplest known element Exists as a diatomic molecule H 2 is a colorless, odorless, and nonpoisonous gas. At 1 atm, boiling point is −252.9°C (20.3 K). Most abundant element in the universe

6 Copyright McGraw-Hill Ground-state electron configuration: 1s 1. –Resembles the alkali metals (Group 1A) in that it can be oxidized to the H + ion, which exists in aqueous solutions in the hydrated form. –Resembles the halogens (Group 7A) in that it forms the hydride H − (hydride ion) - isoelectronic with helium (1s 2 ) Found in a large number of covalent compounds. Unique capacity to form hydrogen bonds

7 Copyright McGraw-Hill Preparation –Industrial scale –Laboratory scale

8 Copyright McGraw-Hill Laboratory Generation of Hydrogen

9 Copyright McGraw-Hill Binary hydrides - compounds containing hydrogen and another element, either a metal or a nonmetal. Types of hydrides –Ionic hydrides direct combination of molecular hydrogen and any alkali or alkaline earth metal –Solids with high melting points –Contain the strong Br Ø nsted base, H −

10 Copyright McGraw-Hill –covalent hydrides - the hydrogen atom is covalently bonded to the atom of another element Types of covalent hydrides –Discrete unit structure – NH 3 –Polymeric structure – (BeH 2 ) x –Interstitial hydrides – compounds of hydrogen and transition metal in which the atomic ratio is not constant – titanium hydride ranges from TiH 1.8 to TiH 2.

11 Copyright McGraw-Hill Binary Hydrides of Representative Elements

12 Copyright McGraw-Hill Isotopes of hydrogen –Hydrogen has three naturally occurring isotopes –, hydrogen, (99.985%) –, deuterium, symbol D, (0.015%) –, tritium, symbol T, (radioactive, t 1/2 =12.5 years. –Deuterium containing water, D 2 O Called heavy water or deuterated water Toxic Affects reaction rates – isotopic effect

13 Copyright McGraw-Hill

14 Copyright McGraw-Hill Hydrogenation - addition of hydrogen to compounds containing multiple bonds, usually carbon to carbon double or triple bonds. –Catalyzed by metals (Pt or Cd) –Important in food industry

15 Copyright McGraw-Hill Hydrogen Economy –Hydrogen an alternative fuel source to petroleum fuels For automobiles Electrical power generation –Pollution free fuel –Present dilemma – how to obtain sufficient amounts of H 2 –Splitting water using solar energy – one possible source for the needed H 2.

16 Copyright McGraw-Hill Carbon 0.09 % by mass of Earth’s crust An essential element of living matter A component of natural gas, petroleum and coal. Combines with oxygen to form carbon dioxide in the atmosphere Occur as carbonates in limestone and chalk. Found free in allotropic forms of diamond and graphite

17 Copyright McGraw-Hill Phase Diagram for Allotropic Forms of Carbon

18 Copyright McGraw-Hill catenation – carbon has the unique ability to form long chains stable rings –Responsible for the millions of carbon- containing compounds Reacts with –Metals to form carbides (strong bases), CaC 2 –Silicon to form carborundum, SiC –Nitrogen to form cyanides, Toxic Readily complexes metals

19 Copyright McGraw-Hill Cyanide Pond for Extracting Gold

20 Copyright McGraw-Hill Important oxides –Carbon monoxide (CO) Formed during incomplete combustion Colorless, odorless gas Used in metallurgical processes Used in organic synthesis Not acidic Only slightly soluble in water Burns to produce carbon dioxide

21 Copyright McGraw-Hill –Carbon dioxide (CO 2 ) Colorless and odorless gas Nontoxic—although it is a simple asphyxiant Acidic oxide – forms carbonic acid Uses –“ carbonated” beverages –Fire extinguishers –Manufacture of baking soda (NaHCO 3 ) –Manufacture of soda ash (Na 2 CO 3 ) –“Dry ice” as a refrigerant

22 Copyright McGraw-Hill Nitrogen and Phosphorous Nitrogen –Mineral sources of nitrogen: saltpeter (KNO 3 ) and Chile saltpeter (NaNO 3 ) –Nitrogen is an essential element of life A component of proteins and nucleic acids –N 2 is obtained by the fractional distillation of air –N 2 contains a triple bond and is stable –Forms variable oxidation states

23 Copyright McGraw-Hill

24 Copyright McGraw-Hill Common (important) forms of nitrogen –Nitride ion, N 3−, a strong Br Ø nsted base –Ammonia, NH 3 Undergoes autoionization to produce the highly basic amide ion, NH 2 - –Hydrazine, N 2 H 4 Basic Reducing Agent

25 Copyright McGraw-Hill Important oxides –Nitrous oxide (N 2 O) Supports combustion Used as dental anesthetic –Nitric oxide (NO) Produced in atmosphere (form of nitrogen fixation) Colorless gas Produced in auto exhaust Paramagnetic Resonance stabilized

26 Copyright McGraw-Hill –Nitrogen Dioxide (NO 2 ) Toxic Paramagnetic Dimerizes to N 2 O 4 in the liquid and gas phases Acidic oxide –Shown in a disproportionation reaction with cold water

27 Copyright McGraw-Hill Nitric acid (HNO 3 ) –Powerful oxidizing agent –Can be reduced to NH 4 + –Aqua regia – 1:3 mixture of concentrated HCl and concentrated HNO 3 Even oxidizes gold –Oxidizes nonmetals to oxoacids –Used in manufacture of Fertilizers Drugs Explosives Dyes

28 Copyright McGraw-Hill Phosphorus –Occurs most commonly in nature as phosphate rocks calcium phosphate [Ca 3 (PO 4 ) 2 ] fluoroapatite [Ca 5 (PO 4 ) 3 F] –Elemental phosphorus produced by –Allotropic forms of phosphorus Red phosphorus White phosphorus Ca 5 (PO 4 ) 3 F

29 Copyright McGraw-Hill Allotropes of Phosphorus

30 Copyright McGraw-Hill –Reactions of phosphorus Formation of phosphine (PH 3 ) Formation of phosphoric acid Reaction with the halogens

31 Copyright McGraw-Hill Acid production from halides Reaction with oxygen to produce acidic oxides

32 Copyright McGraw-Hill Structure of P 4 O 6 and P 4 O 10

33 Copyright McGraw-Hill Oxoacids of phosphorus

34 Copyright McGraw-Hill Oxygen and Sulfur Oxygen –Most abundant element in Earth’s crust (46% by mass) –Atmosphere contains about 21% by volume (23% by mass) –Diatomic molecule (O 2 ) in the free state –Essential for human life –Alloptropic forms: O 2 and O 3 (ozone) –Strong oxidizing and bleaching agent

35 Copyright McGraw-Hill –Oxides Types of oxides –Normal oxide, O 2 2− –Peroxide, O 2 2− –Superoxide, O 2 − All are strong Br Ø nsted bases

36 Copyright McGraw-Hill Bonding in oxides – ionic to covalent left to right on the periodic table Acid-base character of oxides – –Basicity increases down a group –Peroxides H 2 O 2 (hydrogen peroxide) – most common example Basic Amphoteric Acidic

37 Copyright McGraw-Hill Structure of H 2 O 2

38 Copyright McGraw-Hill Polar Miscible with water Decomposes spontaneously Used as mild antiseptic (3% solution) or bleach agent (higher concentrations) Used as rocket fuel due to high heat of decompostion Serves as an oxidzing agent Serves as a reducing agent

39 Copyright McGraw-Hill –Ozone Toxic, light-blue gas Pungent odor Essential component of the atmosphere Structure Powerful oxidizing agent Preparation

40 Copyright McGraw-Hill Preparation of O 3

41 Copyright McGraw-Hill Sulfur –Constitutes about 0.06 % of Earth’s crust by mass –Occurs commonly in nature in the elemental form Sedimentary deposits Gypsum (CaSO 4. 2H 2 O) and various sulfide minerals such as pyrite (FeS 2 ) –Most common allotropic forms Monoclinic Rhombic – most stable form – S 8 FeS 2

42 Copyright McGraw-Hill Puckered Ring of S 8

43 Copyright McGraw-Hill –Extracted by the Fasch process

44 Copyright McGraw-Hill –Forms wide variety of oxidation numbers

45 Copyright McGraw-Hill –Hydrogen sulfide – H 2 S Used in qualitative analysis Preparation Colorless gas with odor of rotten eggs Toxic Weak diprotic acid Reducing agent in basic solution

46 Copyright McGraw-Hill –Oxides of sulfur Sulfur dioxide (SO 2 ) –Pungent colorless gas –Toxic –Preparation –Acidic oxide –Oxidation

47 Copyright McGraw-Hill Sulfur trioxide (SO 3 ) –Involved in acid rain –Used in the production of sulfuric acid (H 2 SO 4 ) in the contact process* *Vanadium(V) oxide (V 2 O 5 ) is the catalyst used for the key second step.

48 Copyright McGraw-Hill Sulfuric acid –Diprotic acid –Colorless, viscous liquid (m.p. 10.4°C) –Concentrated sulfuric acid is 98 % H 2 SO 4 by mass (density 1.84 g/cm3), 18 M. –Oxidizing strength of sulfuric acid depends on temperature and concentration. –Cold dilute sulfuric acid reacts with active metals

49 Copyright McGraw-Hill –Hot concetrated sulfuric acid reacts with less active metals –Depending on the reducing agent, sulfate may be reduced –Oxidizes nonmetals

50 Copyright McGraw-Hill Carbon disulfide (CS 2 ) –Colorless, flammable liquid (b.p. 46°C) –Preparation –SIightly soluble in water –Solvent for nonpolar substances Sulfur hexafluoride (SF 6 ) –Preparation –Colorless, nontoxic, inert gas

51 Copyright McGraw-Hill The Halogens The halogens—fluorine, chlorine, bromine, and iodine—are reactive nonmetals.

52 Copyright McGraw-Hill All are highly reactive and toxic Magnitude of reactivity and toxicity generally decreases from fluorine to iodine. The chemistry of fluorine differs from that of the rest of the halogens in the following ways: –Fluorine is the most reactive due to the relative weakness of the F−F bond. –The difference in reactivity between fluorine and chlorine is greater than that between chlorine and bromine.

53 Copyright McGraw-Hill –Hydrogen fluoride (HF) has a relatively high boiling point (19.5°C) –Hydrofluoric acid is a weak acid, all other hydrohalic acids are strong acids. –Fluorine uniquely reacts with cold sodium hydroxide solution to produce oxygen difluoride as follows: –Silver fluoride (AgF) is soluble. All other silver halides (AgCl, AgBr, and AgI) are insoluble.

54 Copyright McGraw-Hill Elemental state, halogens form diatomic molecules (X 2 ). In nature, always found combined with other elements. –Chlorine, bromine, and iodine occur as halides in seawater –Fluorine occurs in the minerals fluorite (CaF 2 ) and cryolite (Na 3 AlF 6 ). All isotopes of astatine (As) are radioactive

55 Copyright McGraw-Hill Preparation and Properties of F 2 and Cl 2 – determined by their strong oxidizing capability –Fluorine From liquid HF At 70 o C

56 Copyright McGraw-Hill Electrolytic Preparation of F 2

57 Copyright McGraw-Hill –Chlorine Electrolysis of molten NaCl Overall reaction Chlor-alkali process –Designed to prevent side reactions –Mercury cell –Diaphragm cell

58 Copyright McGraw-Hill Mercury Cell in the Chlor-alkali Process

59 Copyright McGraw-Hill Diaphragm Cell in the Chlor-alkali Process

60 Copyright McGraw-Hill Compounds of the Halogens –Either ionic or covalent. The fluorides and chlorides especially those belonging to the alkali metal and alkaline earth metal are ionic compounds (except halides of Be). Most of the halides of nonmetals are covalent compounds. –Oxidation numbers range from −1 to +7 except F which can only be 0 (in F 2 ) and −1, in all compounds.

61 Copyright McGraw-Hill –Hydrogen Halides Preparation from elements – can occur violently Preparation varies with the halogen, for example HCl HBr HF

62 Copyright McGraw-Hill –Industrial uses of hydrogen fluoride (HF) Reactive enough to etch glass Used in the manufacture of Freons –Industrial uses of hydrogen chloride (HCl) Preparation of hydrochloric acid Inorganic chlorides Various metallurgical processes

63 Copyright McGraw-Hill –Aqueous solutions of HX Acidic Variation in acid strength –Oxoacids – halogens form a series of acids Only Cl forms the entire series increasing acid strength

64 Copyright McGraw-Hill

65 Copyright McGraw-Hill Uses of the halogens –Fluorine UF 6 separating isotopes of U Production of polytetrafluorethyline (Teflon ©) –Chlorine Biological role as Cl − (aq) Industrial bleaching – Cl 2 Water purification – Cl 2, ClO − Organic solvents – CHCl 3 Polymer production - PVC

66 Copyright McGraw-Hill –Bromine Insecticides (BrCH 2 CH 2 Br) Scavenger for Pb in gasoline Photographic films (AgBr) –Iodine Antiseptic (tincture of iodine) Thyroxine (thyroid hormone derivative) Cloud seeding (AgI)

67 Copyright McGraw-Hill Key Points General properties of the nonmetals Hydrogen –Properties –Preparation –Binary Halides Ionic Covalent Interstitial

68 Copyright McGraw-Hill –Isotopes of hydrogen Hydrogen (protium) Deuterium Tritium –Hydrogenation –The hydrogen economy Carbon –Properties –Allotropes Diamond Graphite

69 Copyright McGraw-Hill –Carbides –Cyanides –Oxides Carbon monoxide Carbon dioxide Nitrogen and Phosphorus –Nitrogen Properties Nitrides Ammonia Hydrazine

70 Copyright McGraw-Hill Oxides –Nitrous oxide –Nitric oxide –Nitrogen dioxide Nitric Acid –Phosphorus Properties Allotropes –White phosphorus –Red phosphorus Phosphine Halogen compounds

71 Copyright McGraw-Hill Oxides Oxoacids Oxygen and Sulfur –Oxygen Properties Allotropes Oxides –Normal oxide –Peroxide –Superoxide Acidity of oxides

72 Copyright McGraw-Hill Hydrogen peroxide Ozone –Sulfur Properties Industrial production Hydrogen sulfide Oxides –Sulfur dioxide –Sulfur trioxide Sulfuric Acid –Production –Uses

73 Copyright McGraw-Hill Carbon disulfide Sulfur hexafluoride The Halogens –Properties Special properties of fluorine –Preparation and Properites Preparation of fluorine Preparation of chlorine – chlor-alkali process –Mercury Cell –Diaphragm cell

74 Copyright McGraw-Hill Hydrogen Halides Oxoacids –Uses of the halogens Fluorine Chlorine Bromine Iodine


Download ppt "Copyright McGraw-Hill 20091 Chapter 24 Nonmetallic Elements and Their Compounds Insert picture from First page of chapter."

Similar presentations


Ads by Google