Presentation is loading. Please wait.

Presentation is loading. Please wait.

10/24/2007 Thermodynamic Simulations for Phosphorus- Containing Systems Using OLI Software Together with a First-Principle Calculation Katsuhiko TSUNASHIMA,

Similar presentations

Presentation on theme: "10/24/2007 Thermodynamic Simulations for Phosphorus- Containing Systems Using OLI Software Together with a First-Principle Calculation Katsuhiko TSUNASHIMA,"— Presentation transcript:

1 10/24/2007 Thermodynamic Simulations for Phosphorus- Containing Systems Using OLI Software Together with a First-Principle Calculation Katsuhiko TSUNASHIMA, Yasuo YAMAZAKI Nippon Chemical Industrial Co., Ltd. (NCI) JAPAN e-mail: Oct. 24, 2007 OLI Simulation Conference

2 10/24/2007 Outline of the talk 1) Introductory remarks on OLI simulations in NCI 2) Thermodynamic model based on MSE model together with a first-principle calculation Phosphorus-containing species COSMOTherm Evaluation of calculation accuracy 3) Applications in NCI An example of calculation using the new model 4) Summary and future work

3 10/24/2007 Nippon Chemical Industrial Co., Ltd. (NCI) --- A manufacturer of phosphorus compounds --- The products include: Red phosphorus Phosphorus chlorides Orthophosphoric acid Orthophosphates Hypophosphites Phosphine Alkylphosphines Phosphonium salts etc.

4 10/24/2007 NCI phosphorus compounds (Inorganic) Elementary phosphorus P 2 O 5 Phosphorus pentoxide PCl 3 Phosphorus trichloride PCl 5 Phosphorus pentachloride POCl 3 Phosphorus oxychloride MPH 2 O 2 Phosphinates M 2 PHO 3 Phosphonates M 3 PO 4 Ortho- phosphates M 4 P 2 O 7 Pyrophosphates M 5 P 3 O 10 Tripolyphosphates (MPO 3 )n Metaphosphates Ca 5 (OH)(PO 4 ) 3 Hydroxyapatite PH 3 Phosphine M = H, Ba, Na, K, Li, NH 4, Ca, Mg, Zn, Ni, Cu, Fe (O) Cl 2 O2O2 H2OH2O (O) No solvents - H 2 O No solvents* (P 2 O 5 ) KOH Organophosphorus compounds

5 10/24/2007 NCI phosphorus compounds (Organic)

6 10/24/2007 Nippon Chemical Industrial Co., Ltd. (NCI) --- An active user of OLI software --- NCI has been an active user of OLI software (OLI Systems) and calcAQ (created and developed by Dr. Turner, Turner Technology). Both software packages have been installed into ALL client PCs in NCI.

7 10/24/2007 P-Project More than 90 “inorganic” phosphorus species were surveyed and registered into the private databank. The species include: elementary phosphorus (white P, red P) phosphine (PH 3 ), phosphinates (PH 2 O 2 - ), phosphonates (PHO 3 2- ), orthophosphates (PO 4 3- ), pyrophosphates (P 2 O 7 4- ), tripolyphosphates (P 3 O 10 5- ), phosphorus pentoxide (P 2 O 5 ), phosphorus chlorides (PCl 3, PCl 5, POCl 3 ). The construction of a private databank for simulations of phosphorus-containing systems using OLI software

8 10/24/2007 P-Project: An application The Excel interface was kindly created by Dr. H. Turner, Turner Technology, LLC. Prediction of concentration from measured density in aqueous H 3 PO 4 systems Fig. Comparison between literature and calculated data for concentration vs. density of orthophosphoric acid at 25 o C. Fig. An Excel interface actually used in a plant in NCI.

9 10/24/2007 Thermodynamic data of organic phosphorus species Organic phosphorus compounds are not always common, compared to inorganic phosphorus compounds. Therefore, no or little literature data for organic phosphorus species are available. Some organic phosphorus compounds, such as organic phosphines, are unstable (highly oxidized) in air, which makes it difficult to carry out experimental studies to measure their thermodynamic data. However, thermodynamic data of organic phosphorus species were not able to be included into P-project databank, because:

10 10/24/2007 When no experimental data are available, how do we calculate ? OLI software with the data is expected to enable the thermodynamic calculation, even in the case of no experimental data Thermodynamic data for phosphorus species First-principle calculation based on quantum mechanics for obtaining the data of phosphorus species “OLI software”, “calcAQ” “COSMOTherm” (COSMOLogic)

11 10/24/2007 Approach OLI Systems’ Mixed-Solvent Electrolyte (MSE) model Reproducing available experimental data Excess Gibbs energy model for solution nonideality Calculating phase equilibria in liquid-solid-vapor systems and chemical equilibria (acid-base, complexation, redox) COSMOLogic’s COSMOTherm software First-principle quantum mechanics of isolated molecules yields charge densities. Using dielectric continuum solvation techniques, local interactions between molecules yield the chemical potential. Predicting liquid-phase nonideality when no experimental data are available. Solid-liquid transitions cannot be directly calculated unless properties of the solid phase are known from experimental sources

12 10/24/2007 Thermodynamics of orthophosphoric acid (MSE) The model accurately reproduces solid-liquid equilibria in the phosphoric acid system up to the fused salt limit. In this case, there is no need to estimate properties using COSMOTherm. SLE This data was kindly provided by Dr. A. Anderko, OLI Systems.

13 10/24/2007 Hierarchy of parameter determination If sufficient experimental data are available, only experimental data are used. If experimental data for VLE and/or LLE are fragmentary, the MSE model is constrained to match the available data and COSMOTherm predictions are used to fill the gaps in the data. If experimental data are limited to solid solubility and no VLE or LLE data are available, COSMOTherm predictions are used to constrain the activity coefficients. Then, the available solubility data are used to calculate the thermochemical properties of the solid phase as described above. If no solubility data or thermochemical properties of solid phases are available, the MSE model is unable to predict SLE. Then, MSE can predict only VLE and/or LLE using parameters obtained from either experimental data or COSMOTherm predictions.

14 10/24/2007 Triphenylphosphate (TPP) + water In order to evaluate the accuracy of the calculation, triphenylphosphate is used, because a few literature data are available, although this compound is not phosphine compound. The experimental data are limited to the melting point and room-temperature solubility The LLE predictions from COSMOTherm are consistent with the fragmental experimental data COSMOTherm fills the gaps in experimental coverage; MSE enables SLE predictions LLE SLE This data was kindly provided by Dr. A. Anderko, OLI Systems.

15 10/24/2007 Summary A comprehensive model has been established for calculating the thermodynamic properties of aqueous systems containing phosphorus compounds. The framework is based on the OLI MSE model. The model parameters are determined from a combination of experimental data and predictions from COSMOTherm, a computational chemistry software. The model has been implemented in process simulation software.

16 10/24/2007 In our plants, OLI software equipped with the databank containing the data of P-species are actually available for the: Reaction processes Mixing processes Crystallization processes Distillation processes Waste water treatments etc. Industrial applications Fukushima plant, NCI

17 10/24/2007 Private databank containing P-species based on MSE model Added organic phosphorus species include: tributylphosphate (BuO) 3 P=O triphenylphosphate (PhO) 3 P=O tributylphosphine Bu 3 P trioctylphosphine Oc 3 P triphenylphosphine Ph 3 P tetrabutylphosphonium chloride Bu 4 P-Cl tetrabutylphosphonium bromide Bu 4 P-Br tributylmethylphosphonium iodide Bu 3 MeP-I

18 10/24/2007 An example: PH 3 + Bu 3 P in water It is very important for us to be able to calculate this system from the viewpoint of process control.

19 10/24/2007 Low pressure conditions Bu 3 P, 2nd liq. Bu 3 P, Vap. Ambient pressure A vapor-liquid equilibria of Bu 3 P was calculated. The calculation under low pressures is important for controlling the evaporation and distillation processes of Bu 3 P.

20 10/24/2007 High pressure conditions Ambient pressure PH 3, 2nd liq. PH 3, Aq. PH 3, Vap. A vapor-liquid equilibria of PH 3 was calculated. The contents of PH 3 in aqueous and 2nd liquid phases are increased with increasing the pressure. Bu 3 P is often produced from PH 3 under high pressure conditions, so that this calculation is very important for controlling the production process.

21 10/24/2007 The future target Organic phase (hexane, toluene, etc.) Aqueous phase Ionic liquid phase The tri-phasic system containing an “ionic liquid” phase as the third liquid phase “Ionic liquids” are organic molten salts with low melting point: etc.

22 10/24/2007 Acknowledgements We would like to acknowledge and thank: Dr. Andrzej Anderko, OLI Systems, Inc. Dr. Malgorzata M. Lencka, OLI Systems, Inc. Mr. Jerzy J. Kosinski, OLI Systems, Inc. Mr. Ronald D. Springer, OLI Systems, Inc. Dr. Andreas Klamt, COSMOlogic GmbH & Co. KG Dr. Hamp Turner, Turner Technology, LLC. Thank you for your kind attention.

Download ppt "10/24/2007 Thermodynamic Simulations for Phosphorus- Containing Systems Using OLI Software Together with a First-Principle Calculation Katsuhiko TSUNASHIMA,"

Similar presentations

Ads by Google