Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007  Introduction:

Similar presentations


Presentation on theme: "Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007  Introduction:"— Presentation transcript:

1 Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007  Introduction: What is Cosmic Reionization?  Current constraints on the IGM neutral fraction with cosmic epoch  Neutral Intergalactic Medium (IGM) – HI 21cm signals  Low frequency telescopes and observational challenges

2 References Reionization and HI 21cm studies of the neutral IGM  “Observational constraints on cosmic reionization,” Fan, Carilli, Keating 2006, ARAA, 44, 415  “Cosmology at low frequencies: the 21cm transition and the high redshift universe,” Furlanetto, Oh, Briggs 2006, Phys. Rep., 433, 181 Early structure formation and first light  “The first sources of light and the reionization of the universe,” Barkana & Loeb 2002, Phys.Rep., 349, 125  “The reionization of the universe by the first stars and quasars,” Loeb & Barkana 2002, ARAA, 39, 19  “Observations of the high redshift universe,” Ellis 2007, Saas-Fe advanced course 36

3 Ionized Neutral Reionized History of Baryons in the Universe

4 Chris Carilli (NRAO) Berlin June 29, 2005 WMAP – structure from the big bang

5 Hubble Space Telescope Realm of the Galaxies

6 Dark Ages Twilight Zone Epoch of Reionization Last phase of cosmic evolution to be tested Bench-mark in cosmic structure formation indicating the first luminous structures

7 Dark Ages Twilight Zone Epoch of Reionization Epoch? Process? Sources?

8 Gnedin 03 Reionization: the movie 8Mpc comoving

9 Barkana and Loeb 2001 Constraint I: Gunn-Peterson Effect z

10 Gunn-Peterson Effect toward z~6 SDSS QSOs Fan et al 2006

11 Gunn- Peterson limits to f(HI)  to f(HI) conversion requires ‘clumping factor’  >>1 for f(HI)>0.001 => low f(  ) diagnostic GP => Reionization occurs in ‘twilight zone’, opaque for obs <0.9  m  GP = 2.6e4 f(HI) (1+z)^3/2 End of reionization? f(HI) <1e-4 at z= 5.7 f(HI) >1e-3 at z= 6.3

12 Contraint II: The CMB Temperature fluctuations due to density inhomogeneities at the surface of last scattering (z ~ 1000) Angular power spectrum ~ variance on given angular scale ~ square of visibility function Sound horizon at recombination ~ 1deg Sachs-Wolfe

13 No reionization Reionization Thomson scatting during reionization (z~10)  Acoustics peaks are ‘fuzzed-out’ during reionization.  Problem: degenerate with intrinsic amplitude of the anisotropies. Reionization and the CMB

14 TT TE EE CMB large scale polarization -- Thomson scattering during reionization   Scattering CMB local quadrapole => polarized   Large scale: horizon scale at reionization ~ 10’s deg  Signal is weak: TE = 10% TT (few uK) EE = 1% TT  EE (l ~ 5)~ 0.3+/- 0.1 uK Page + 06; Spergel 06  e ~ l / mfp ~ l n e  e  (1+z)^2 = 0.09+/-0.03

15 TT TE EE Constraint II: CMB large scale polarization -- Thomson scattering during reionization   Rules-out high ionization fraction at z> 15  Allows for finite (~0.2) ionization to high z  Most action occurs at z ~ 8 to 14, with f(HI) < 0.5 Page + 06; Spergel 06

16  e = integral measure to recombination=> allows many IGM histories Still a 3  result (now in EE vs. TE before) Combined CMB + GP constraints on reionization

17 t univ = 0.87Gyr L bol = 1e14 L o Black hole: ~3 x 10 9 M o ( Willot etal. ) Gunn Peterson trough (Fan etal.) Pushing into reionization: QSO 1148+52 at z=6.4

18 1148+52 z=6.42: Gas detection Off channels Rms=60uJy 46.6149 GHz CO 3-2 M(H 2 ) ~ 2e10 M o z host = 6.419 +/- 0.001 (note: z ly  = 6.37 +/- 0.04) VLA IRAM VLA

19 Constrain III: Cosmic Stromgren Sphere Accurate z host from CO: z=6.419+/0.001 Proximity effect: photons leaking from 6.32 { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/12/3511964/slides/slide_19.jpg", "name": "Constrain III: Cosmic Stromgren Sphere Accurate z host from CO: z=6.419+/0.001 Proximity effect: photons leaking from 6.32

20 Loeb & Rybicki 2000

21 CSS: Constraints on neutral fraction at z~6  Nine z~6 QSOs with CO or MgII redshifts: = 4.4 Mpc (Wyithe et al. 05; Fan et al. 06; Kurk et al. 07)  GP => f(HI) > 0.001  If f(HI) ~ 0.001, then ~ 1e4 yrs – implausibly short given QSO fiducial lifetimes (~1e7 years)?  Probability arguments + size evolution suggest: f(HI) > 0.05 Wyithe et al. 2005 =t qso /4e7 yrs 90% probability x(HI) > curve P(>x HI ) Fan et al 2005

22 Difficulties for Cosmic Stromgren Spheres (Lidz + 07, Maselli + 07)  Requires sensitive spectra in difficult near-IR band  Sensitive to R: f(HI)  R^-3  Clumpy IGM => ragged edges  Pre-QSO reionization due to star forming galaxies, early AGN activity

23 ESO OI  Not ‘event’ but complex process, large variance: z reion ~ 14 to 6  Good evidence for qualitative change in nature of IGM at z~6

24 ESO OI Saturates, HI distribution function, pre-ionization? Abundance? 3 , integral measure? Local ionization? Geometry, pre- reionization?  Current probes are all fundamentally limited in diagnostic power  Need more direct probe of process of reionization = HI 21cm line Local ioniz.?

25 Low frequency radio astronomy: Most direct probe of the neutral IGM during, and prior to, cosmic reionization, using the redshifted HI 21cm line: z>6 => 100 – 200 MHz Square Kilometer Array

26 1e13 M o 1e9 M o HI mass limits => large scale structure Reionization

27 HI 21cm radiative transfer: large scale structure of the IGM LSS: Neutral fraction / Cosmic density / Temperature: Spin, CMB

28 Dark Ages HI 21cm signal z > 200: T  = T K = T s due to collisions + Thomson scattering => No signal z ~ 30 to 200: T K decouples from T , but collisions keep T s ~ T K => absorption signal z ~ 20 to 30: Density drops  T s ~ T  => No signal Barkana & Loeb: “Richest of all cosmological data sets” Three dimensional in linear regime Probe to k ~ 10^3 /Mpc vs. CMB limit set by photon diffusion ~ 0.2/Mpc Alcock-Pascinsky effect Kaiser effect + peculiar velocites T K = 0.026(1+z)^2 T  = 2.73(1+z) Furlanetto et al. 2006

29 Enlightenment and Cosmic Reionization -- first luminous sources z ~ 15 to 20: T S couples to T K via Lya scattering, but T K absorption z ~ 6 to 15: IGM is heated (Xrays, Lya, shocks), partially ionized => emission z < 6: IGM is fully ionized TKTK TT

30 Signal I: Global (‘all sky’) reionization signature Signal ~ 20mK < 1e-4 sky Possible higher z absorption signal via Lya coupling of T s -- T K due to first luminous objects Feedback in Galaxy formation No Feedback Furlanetto, Oh, Briggs 06

31 Signal II: HI 21cm Tomography of IGM Zaldarriaga + 2003 z=1297.6   T B (2’) = 10’s mK  SKA rms(100hr) = 4mK  LOFAR rms (1000hr) = 80mK

32 Signal III: 3D Power spectrum analysis SKA LOFAR McQuinn + 06  only  + f(HI)

33 N(HI) = 1e13 – 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => before reionization N(HI) =1e18 – 1e21 cm^-2  Lya ~ 1e7  21cm => neutral IGM opaque to Lya, but translucent to 21cm Signal IV: Cosmic Web after reionization Ly alpha forest at z=3.6 (  < 10) Womble 96

34 z=12z=8 19mJy 130MHz radio G-P (  =1%) 21 Forest (10%) mini-halos (10%) primordial disks (100%) Signal IV: Cosmic web before reionization: HI 21Forest Perhaps easiest to detect (use long baselines) ONLY way to study small scale structure during reionization 159MHz

35 Radio sources beyond the EOR sifting problem (1/1400 per 20 sq.deg.) 2240 at z > 6 1.4e5 at z > 6 S 120 > 6mJy

36 Signal V: Cosmic Stromgren spheres around z > 6 QSOs 0.5 mJy  LOFAR ‘observation’: 20xf(HI)mK, 15’,1000km/s => 0.5 x f(HI) mJy  Pathfinders: Set first hard limits on f(HI) at end of cosmic reionization  Easily rule-out cold IGM (T _s < T _cmb ): signal = 360 mK Wyithe et al. 2006 5Mpc

37 Signal VI: Dark Ages: Baryon Oscillations Very low frequency (<75MHz) = Long Wavelength Array Very difficult to detect  Signal: 10 arcmin, 10mk => S 30MHz = 0.02 mJy  SKA sens in 1000hrs: = 20000K at 50MHz => rms = 0.2 mJy  Need > 10 SKAs  Need DNR > 1e6 z=50 z=150 Barkana & Loeb 2005

38 Challenge I: Low frequency foreground – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T ~ 100  z)^-2.6 K 90% = Galactic foreground 10% = Egal. radio sources ~ 1 source/deg^2 with S 140 > 1 Jy

39 Solution: spectral decomposition (eg. Morales, Gnedin…)  Foreground = non-thermal = featureless over ~ 100’s MHz  Signal = fine scale structure on scales ~ few MHz 10’ FoV; SKA 1000hrs Signal/Sky ~ 2e-5 Cygnus A 500MHz5000MHz Simply remove low order polynomial or other smooth function?

40 Cross correlation in frequency, or 3D power spectral analysis: different symmetries in frequency space for signal and foregrounds. Freq Signal Foreground Morales 2003

41 Cygnus A at WSRT 141 MHz 12deg field (de Bruyn) Frequency differencing  ‘errors’ are ‘well-behaved’ ‘CONTINUUM’ (B=0.5 MHz) ‘LINE’ CHANNEL (10 kHz) - CONT (Original) peak: 11000 Jy noise 70 mJy dynamic range ~ 150,000 : 1

42 Galactic foreground polarization ‘interaction’ with polarized beams  frequency dependent residuals! Solution: good calibration of polarization response NGP 350 MHz 6 o x6 o ~ 5 K pol IF Faraday-thin  40 K at 150 MHz WENSS: Schnitzeler et al A&A Jan07 30 o x 30 o

43  ‘Isoplanatic patch’ = few deg = few km  Phase variation proportional to wavelength^2 74MHz Lane 03 Challenge II: Ionospheric phase errors – varying e- content TID

44 Solution:  Wide field ‘rubber screen’ phase self-calibration = ‘peeling’  Requires build-up of accurate sky source model Virgo A 6 hrs VLA 74 MHz Lane + 02 15’ Ionospheric phase errors: The Movie

45 Challenge III: Interference 100 MHz z=13 200 MHz z=6 Solutions -- RFI Mitigation (Ellingson06)  Digital filtering: multi-bit sampling for high dynamic range (>50dB)  Beam nulling/Real-time ‘reference beam’  LOCATION!

46 Beam nulling -- ASTRON/Dwingeloo (van Ardenne) Factor 300 reduction in power

47 VLA-VHF: 180 – 200 MHz Prime focus CSS search Greenhill, Blundell (SAO); Carilli, Perley (NRAO) Leverage: existing telescopes, IF, correlator, operations  $110K D+D/construction (CfA)  First light: Feb 16, 05  Four element interferometry: May 05  First limits: Winter 06/07

48 Project abandoned: Digital TV KNMD Ch 9 150W at 100km

49 RFI mitigation: location, location location… 100 people km^-2 1 km^-2 0.01 km^-2 (Briggs 2005)

50 Multiple experiments under-way: ‘pathfinders’ MWA (MIT/CfA/ANU) LOFAR (NL) 21CMA (China) SKA

51

52

53 EDGES (Bowman & Rogers MIT) All sky reionization HI experiment. Single broadband dipole experiment with (very) carefully controlled systematics + polynomial baseline subtraction (7th order)  T reion < 450mK at z = 6.5 to 10 (DNR ~ 2700) (expect ~ 20mK) Sky > 150 K rms = 75 mK VaTech Dipole Ellingson

54 GMRT 230 MHz – HI 21cm abs toward highest z (~5.2) radio AGN 0924-220 z=5.2 S 230MHz = 0.5 Jy 1” 8GHz Van Breugel et al. GMRT at 230 MHz = z 21cm RFI = 20 kiloJy ! CO Klamer + M(H 2 ) ~ 3e10 M o

55 GMRT 230 MHz – HI 21cm abs toward highest z radio AGN (z~5.2) rms(20km/s) = 5 mJy 229Mhz 0.5 Jy 232MHz 30mJy rms(40km/s) = 3mJy N(HI) ~ 2e20T S cm^-2 ? Limits:  Few mJy/channel  Few percent in optical depth

56 Focus: Reionization (power spec,CSS,abs)

57 PAPER: Staged Engineering Approach Broad band sleeve dipole => 2x2 tile 8 dipole test array in GB (06/07) => 32 station array in WA (12/07) FPGA-based ‘pocket correlator’ from Berkeley wireless lab => custom design. BEE2: 5 FPGAs, 500 Gops/s S/W Imaging, calibration, PS analysis: Miriad/AIPS => Python + CASA, including ionospheric ‘peeling’ calibration + MFS ‘Peel the problem onion’ 100MHz200MHz

58 Cas A 1e3Jy CygA 1e4Jy W44 1e2Jy HercA 1e2Jy PAPERGB -- 8 Ant, 1hr, 12/06 RMS ~ 15Jy; DNR ~ 1e3 5deg

59 Destination: Moon! RAE2 1973  No interference (ITU protected zone)  No ionosphere (?)  Easy to deploy and maintain (high tolerance electronics + no moving parts) 10MHz Needed for probing ‘Dark ages’: z>30 => freq < 50 MHz

60 Radio astronomy – Probing Cosmic Reionization ‘Twilight zone’: study of first light limited to near-IR to radio First constraints: GP, CMBpol => reionization is complex and extended: z _reion = 6 to 11 HI 21cm: most direct probe of reionization Low freq pathfinders: All-sky, PS, CSS SKA: imaging of IGM

61 END

62 Relative evolution of Ly-break and Ly  galaxy populations: Obscuration by the neutral IGM (Ota + 2007)  Local ionization (CSS)?  Low S/N LAE observed z=5.7 LAE predicted z=7 based on UV continuum LAE obs z=7 At z=7 => f(HI)=0.48+/-0.16

63 Dark Matter Press-Schechter Formalism z M 2  T vir Msun K 0 1e14 3e7 5 3e10 3e5 10 6e7 8e3 M ’Jeans’ = 1e4 M sun (z=20) Minihalos: H 2 cooling: T vir = 300 to 1e4 K => M = 1e5 to 1e8 M sun issues: primordial H _2 formation? Near UV dissociates H _2 ? Soft Xray catalyzes H _2 formation? Preferentially form 100 M _sun stars (popIII)? Protogalaxies : H line cooling => T _vir > 1e4 K Baryons: astrophysics Early structure formation: rules-of-thumb (Barkana & Loeb 2002)

64 Some basics Structure formation: the Dark Matter perspective = Press-Schechter Formalism z M_ 2  T _vir M_sun K 0 1e14 3e7 5 3e10 3e5 10 6e7 8e3

65 Minihalos z>15: M=1e5 to 1e8M o => T vir = 300 to 1e4 K => H 2 cooling Primordial H 2 formation? Near UV dissociates H 2 ? Soft Xray catalyzes H 2 formation? Preferentially form 100 M o stars? Protogalaxies z T vir > 1e4 K => HI line cooling [Cosmological Jeans mass 20] Some basics Structure formation: the Baryons

66 Cosmic Stromgren Surfaces (Hui & Haiman) Larger CSS in Ly  vs. Ly  = Damping wing of Ly  ? Large N(HI) (> 1e20cm^-2) => f(HI) > 0.1 z host

67 GMRT Digital Filter in Lag-space (Pen et al. 2007) 150 MHz

68 Cen 2002 Some basics: What’s time…? Stellar fusion produces 7e6eV/H atom. Reionization requires 13.6eV/H atom =>Need to process only 1e-5 of baryons through stars to reionize the universe At z>6 t univ < 1 Gyr At z > 8 t recombination < t univ

69


Download ppt "Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007  Introduction:"

Similar presentations


Ads by Google