Download presentation

Presentation is loading. Please wait.

Published byTyler Dawson Modified over 3 years ago

1
**Extension Principle Adriano Cruz ©2002 NCE e IM/UFRJ**

2
Fuzzy Numbers A fuzzy number is fuzzy subset of the universe of a numerical number. A fuzzy real number is a fuzzy subset of the domain of real numbers. A fuzzy integer number is a fuzzy subset of the domain of integers. @2002 Adriano Cruz NCE e IM - UFRJ

3
**Fuzzy Numbers - Example**

u(x) Fuzzy real number 10 5 10 15 x u(x) Fuzzy integer number 10 5 10 15 x @2002 Adriano Cruz NCE e IM - UFRJ

4
**Functions with Fuzzy Arguments**

A crisp function maps its crisp input argument to its image. Fuzzy arguments have membership degrees. When computing a fuzzy mapping it is necessary to compute the image and its membership value. @2002 Adriano Cruz NCE e IM - UFRJ

5
Crisp Mappings Y f(X) X @2002 Adriano Cruz NCE e IM - UFRJ

6
**Functions applied to intervals**

Compute the image of the interval. An interval is a crisp set. y y=f(I) I x @2002 Adriano Cruz NCE e IM - UFRJ

7
Mappings f(X) Y X Fuzzy argument? @2002 Adriano Cruz NCE e IM - UFRJ

8
Extension Principle Suppose that f is a function from X to Y and A is a fuzzy set on X defined as A = µA(x1)/x1 + µA(x2)/x µA(xn)/xn The extension principle states that the image of fuzzy set A under the mapping f(.) can be expressed as a fuzzy set B. B = f(A) = µA(x1)/y1 + µA(x2)/y µA(xn)/yn where yi=f(xi) @2002 Adriano Cruz NCE e IM - UFRJ

9
Extension Principle If f(.) is a many-to-one mapping, then there exist x1, x2 X, x1 x2, such that f(x1)=f(x2)=y*, y*Y. The membership grade at y=y* is the maximum of the membership grades at x1 and x2 more generally, we have @2002 Adriano Cruz NCE e IM - UFRJ

10
**Monotonic Continuous Functions**

For each point in the interval Compute the image of the interval. The membership degrees are carried through. I @2002 Adriano Cruz NCE e IM - UFRJ

11
**Monotonic Continuous Functions**

y y x u(y) u(x) x @2002 Adriano Cruz NCE e IM - UFRJ

12
**Monotonic Continuous Ex.**

Function: y=f(x)=0.6*x+4 Input: Fuzzy number - around-5 Around-5 = 0.3 / / / 7 f(around-5) = 0.3/f(3) + 1/f(5) + 0.3/f(7) f(around-5) = 0.3/0.6* / 0.6* / 0.6*7+4 f(around-5) = 0.3/ / /8.2 I @2002 Adriano Cruz NCE e IM - UFRJ

13
**Monotonic Continuous Ex.**

f(x) 8.2 10 5.8 4 x 5 10 1 0.3 u(x) 1 0.3 x 3 5 7 @2002 Adriano Cruz NCE e IM - UFRJ

14
**Nonmonotonic Continuous Functions**

For each point in the interval Compute the image of the interval. The membership degrees are carried through. When different inputs map to the same value, combine the membership degrees. @2002 Adriano Cruz NCE e IM - UFRJ

15
**Nonmonotonic Continuous Functions**

y y x u(y) u(x) x @2002 Adriano Cruz NCE e IM - UFRJ

16
**Nonmonotonic Continuous Ex.**

Function: y=f(x)=x2-6x+11 Input: Fuzzy number - around-4 Around-4 = 0.3/2+0.6/3+1/4+0.6/5+0.3/6 y = 0.3/f(2)+0.6/f(3)+1/f(4)+0.6/f(5)+0.3/f(6) y = 0.3/3+0.6/2+1/3+0.6/6+0.3/11 y = 0.6/2+(0.3 v 1)/3+0.6/6+0.3/11 y = 0.6/2 + 1/ / /11 I @2002 Adriano Cruz NCE e IM - UFRJ

17
**Nonmonotonic Continuous Functions**

y y 1 v 0.3 x 1 0.6 0.3 u(y) u(x) 1 0.6 0.3 x 2 3 4 5 6 @2002 Adriano Cruz NCE e IM - UFRJ

18
**Function Example 1 Consider Consider fuzzy set Result**

@2002 Adriano Cruz NCE e IM - UFRJ

19
**Function Example 2 Result according to the principle**

@2002 Adriano Cruz NCE e IM - UFRJ

20
Function Example 3 @2002 Adriano Cruz NCE e IM - UFRJ

21
Extension Principle Let f be a function with n arguments that maps a point in X1xX2x...xXn to a point in Y such that y=f(x1,…,xn). Let A1x…xAn be fuzzy subsets of X1xX2x...xXn The image of A under f is a subset of Y defined by @2002 Adriano Cruz NCE e IM - UFRJ

22
**Arithmetic Operations**

Applying the extension principle to arithmetic operations it is possible to define fuzzy arithmetic operations Let x and y be the operands, z the result. Let A and B denote the fuzzy sets that represent the operands x and y respectively. @2002 Adriano Cruz NCE e IM - UFRJ

23
Fuzzy addition Using the extension principle fuzzy addition is defined as @2002 Adriano Cruz NCE e IM - UFRJ

24
**Fuzzy addition - Examples**

B =(11~)= 0.5/10 + 1/ /12 A+B=(0.3^0.5)/(1+10) + (0.6^0.5)/(2+10) + (1^0.5)/(3+10) + (0.6^0.5)/(4+10) + (0.3^0.5)/(5+10) + (0.3^1)/(1+11) + (0.6^1)/(2+11) + (1^1)/(3+11) + (0.6^1)/(4+11) + (0.3^1)/(5+11) +( 0.3^0.5)/(1+12) + (0.6^0.5)/(2+12) + (1^0.5)/(3+12) + (0.6^0.5)/(4+12) + (0.3^0.5)/(5+12) @2002 Adriano Cruz NCE e IM - UFRJ

25
**Fuzzy addition - Examples**

B =(11~)= 0.5/10 + 1/ /12 Getting the minimum of the membership values A+B=0.3/ / / / / / /13 + 1/ / / / / / / /17 @2002 Adriano Cruz NCE e IM - UFRJ

26
**Fuzzy addition - Examples**

B =(11~)= 0.5/10 + 1/ /12 Getting the maximum of the duplicated values A+B=0.3/11 + (0.5 V 0.3)/12 + (0.5 V 0.6 V 0.3)/13 + (0.5 V 1 V 0.5)/14 + (0.3 V 0.6 V 0.5)/15 + (0.3 V 0.5)/ /17 A+B=0.3 / / / / / / / 17 @2002 Adriano Cruz NCE e IM - UFRJ

27
**Fuzzy addition B, y=11 A, x=3 C, x=14 0.6 0.5 0.3 @2002 Adriano Cruz**

NCE e IM - UFRJ

28
Fuzzy Arithmetic Using the extension principle the remaining fuzzy arithmetic fuzzy operations are defined as: @2002 Adriano Cruz NCE e IM - UFRJ

Similar presentations

Presentation is loading. Please wait....

OK

Advanced Piloting Cruise Plot.

Advanced Piloting Cruise Plot.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on hydraulic power steering system Ppt on five monuments of india Ppt on building information modeling degree Ppt on nitrogen cycle and nitrogen fixation is carried Ppt on arabinose operon Ppt on series and parallel circuits pdf Ppt on peak load pricing lecture Ppt on behaviour of seismic waves Ppt on building information modeling revit Ppt on new zealand culture and customs