Presentation is loading. Please wait.

Presentation is loading. Please wait.

DNA, RNA, and Proteins. Section 1: The Structure of DNA Preview DNA: The Genetic Material DNA: The Genetic Material DNA: The Genetic Material DNA: The.

Similar presentations


Presentation on theme: "DNA, RNA, and Proteins. Section 1: The Structure of DNA Preview DNA: The Genetic Material DNA: The Genetic Material DNA: The Genetic Material DNA: The."— Presentation transcript:

1 DNA, RNA, and Proteins

2 Section 1: The Structure of DNA Preview DNA: The Genetic Material DNA: The Genetic Material DNA: The Genetic Material DNA: The Genetic Material Searching for the Genetic Material Searching for the Genetic Material Searching for the Genetic Material Searching for the Genetic Material The Shape of DNA The Shape of DNA The Shape of DNA The Shape of DNA The Information in DNA The Information in DNA The Information in DNA The Information in DNA Discovering DNA’s Structure Discovering DNA’s Structure Discovering DNA’s Structure Discovering DNA’s Structure Summary Summary Summary

3 DNA: The Genetic Material The instructions for inherited traits are called genes. A gene is a small segment of deoxyribonucleic acid, or DNA, that is located in a chromosome. The instructions for inherited traits are called genes. A gene is a small segment of deoxyribonucleic acid, or DNA, that is located in a chromosome. DNA is the primary material that causes inheritable characteristics in related groups of organisms. DNA is the primary material that causes inheritable characteristics in related groups of organisms. DNA is a simple molecule, composed of only four different subunits. DNA is a simple molecule, composed of only four different subunits.

4 Searching for the Genetic Material Three major experiments led to the conclusion that DNA is the genetic material in cells. These experiments were performed by Griffith, Avery, and Hershey and Chase. Three major experiments led to the conclusion that DNA is the genetic material in cells. These experiments were performed by Griffith, Avery, and Hershey and Chase. Griffith worked with two related strains of bacteria which cause pneumonia in mice. Griffith worked with two related strains of bacteria which cause pneumonia in mice. Griffith discovered that when harmless live bacteria were mixed with heat-killed disease- causing bacteria and then injected into mice, the mice died. Griffith discovered that when harmless live bacteria were mixed with heat-killed disease- causing bacteria and then injected into mice, the mice died.

5 Searching for the Genetic Material, continued These results led Griffith to discover transformation. Transformation is a change in genotype that is caused when cells take up foreign genetic material. These results led Griffith to discover transformation. Transformation is a change in genotype that is caused when cells take up foreign genetic material. Griffith’s experiments led to the conclusion that genetic material could be transferred between cells. Griffith’s experiments led to the conclusion that genetic material could be transferred between cells.

6 Visual Concept: Transformation

7 Griffith’s Discovery of Transformation

8 Searching for the Genetic Material, continued Avery wanted to determine whether the transforming agent in Griffith’s experiments was protein, RNA, or DNA. Avery wanted to determine whether the transforming agent in Griffith’s experiments was protein, RNA, or DNA. Avery used enzymes to destroy each of these molecules in heat-killed bacteria. Avery used enzymes to destroy each of these molecules in heat-killed bacteria. Avery’s experiments led to the conclusion that DNA is responsible for transformation in bacteria. Avery’s experiments led to the conclusion that DNA is responsible for transformation in bacteria.

9 Searching for the Genetic Material, continued Hershey and Chase studied bacteriophages. Bacteriophages are viruses that infect bacterial cells and cause the cells to produce viruses. Hershey and Chase studied bacteriophages. Bacteriophages are viruses that infect bacterial cells and cause the cells to produce viruses. By using radioactive isotopes, Hershey and Chase showed that DNA, not protein, is the genetic material in viruses. By using radioactive isotopes, Hershey and Chase showed that DNA, not protein, is the genetic material in viruses.

10 Visual Concept: Hershey and Chase’s Experiments

11 The Shape of DNA A DNA molecule is shaped like a spiral staircase and is composed of two parallel strands of linked subunits. A DNA molecule is shaped like a spiral staircase and is composed of two parallel strands of linked subunits. The spiral shape of DNA is known as a double helix. The spiral shape of DNA is known as a double helix. Each strand of DNA is made up of linked subunits called nucleotides. Each strand of DNA is made up of linked subunits called nucleotides.

12 Visual Concept: Double Helix Click above to play the video.

13 The Shape of DNA, continued A nucleotide is made up of three parts: a phosphate group, a five-carbon sugar group, and a nitrogen-containing base. A nucleotide is made up of three parts: a phosphate group, a five-carbon sugar group, and a nitrogen-containing base. The phosphate groups and the sugar molecules of nucleotides link together to form a “backbone” for the DNA strand. The phosphate groups and the sugar molecules of nucleotides link together to form a “backbone” for the DNA strand. The five-carbon sugar in DNA is called deoxyribose, from which DNA gets its full name, deoxyribonucleic acid. The five-carbon sugar in DNA is called deoxyribose, from which DNA gets its full name, deoxyribonucleic acid.

14 DNA

15 Visual Concept: DNA Overview Click above to play the video.

16 The Information in DNA The information in DNA is contained in the order of the bases, while the base-pairing structure allows the information to be copied. The information in DNA is contained in the order of the bases, while the base-pairing structure allows the information to be copied. In DNA, each nucleotide has the same sugar group and phosphate group, but each nucleotide can have one of four nitrogenous bases. In DNA, each nucleotide has the same sugar group and phosphate group, but each nucleotide can have one of four nitrogenous bases. The four kinds of bases are adenine (A), guanine (G), thymine (T), and cytosine (C). The four kinds of bases are adenine (A), guanine (G), thymine (T), and cytosine (C). Bases A and G have a double-ring structure and are classified as purines. Bases A and G have a double-ring structure and are classified as purines.

17 The Information in DNA, continued Bases T and C have a single-ring structure and are classified as pyrimidines. Bases T and C have a single-ring structure and are classified as pyrimidines.

18 A purine on one strand of a DNA molecule is always paired with a pyrimidine on the other strand. Specifically, adenine always pairs with thymine, and guanine always pairs with cytosine. A purine on one strand of a DNA molecule is always paired with a pyrimidine on the other strand. Specifically, adenine always pairs with thymine, and guanine always pairs with cytosine. Base-pairing rules are dictated by the chemical structure of the bases. Base-pairing rules are dictated by the chemical structure of the bases. The hydrogen bonds between bases keep the two strands of DNA together. The hydrogen bonds between bases keep the two strands of DNA together.

19 Visual Concept: Complementary Base Pairing Click above to play the video.

20 The Information in DNA, continued Paired bases are said to be complementary because they fit together like puzzle pieces. Paired bases are said to be complementary because they fit together like puzzle pieces. Because of base-pairing rules, if the sequence of bases is known for one strand of DNA, then the sequence of bases for the complementary strand can be quickly identified. Because of base-pairing rules, if the sequence of bases is known for one strand of DNA, then the sequence of bases for the complementary strand can be quickly identified.

21 Discovering DNA’s Structure Watson and Crick used information from experiments by Chargaff, Wilkins, and Franklin to determine the three-dimensional structure of DNA. Watson and Crick used information from experiments by Chargaff, Wilkins, and Franklin to determine the three-dimensional structure of DNA. Chargaff showed that the amount of adenine always equaled the amount of thymine, and the amount of guanine always equaled the amount of cytosine. Chargaff showed that the amount of adenine always equaled the amount of thymine, and the amount of guanine always equaled the amount of cytosine. Franklin and Wilkins developed X-ray diffraction images of strands of DNA that suggested the DNA molecule resembled a tightly coiled helix. Franklin and Wilkins developed X-ray diffraction images of strands of DNA that suggested the DNA molecule resembled a tightly coiled helix.

22 Discovering DNA’s Structure, continued Watson and Crick used both Chargaff’s data and the X-ray diffraction studies to create a complete three-dimensional model of DNA. Watson and Crick used both Chargaff’s data and the X-ray diffraction studies to create a complete three-dimensional model of DNA. Their model showed a “spiral staircase” in which two strands of nucleotides twisted around a central axis. Their model showed a “spiral staircase” in which two strands of nucleotides twisted around a central axis.

23 Summary DNA is the primary material that causes inheritable characteristics in related groups of organisms. DNA is the primary material that causes inheritable characteristics in related groups of organisms. Three major experiments led to the conclusion that DNA is the genetic material in cells. These experiments were performed by Griffith, Avery, and Hershey and Chase. Three major experiments led to the conclusion that DNA is the genetic material in cells. These experiments were performed by Griffith, Avery, and Hershey and Chase. A DNA molecule is shaped like a spiral staircase and is composed of two parallel strands of linked subunits. A DNA molecule is shaped like a spiral staircase and is composed of two parallel strands of linked subunits.

24 Summary, continued The information in DNA is contained in the order of the bases, while the base-pairing structure allows the information to be copied. The information in DNA is contained in the order of the bases, while the base-pairing structure allows the information to be copied. Watson and Crick used information from experiments by Chargaff, Wilkins, and Franklin to determine the three-dimensional structure of DNA. Watson and Crick used information from experiments by Chargaff, Wilkins, and Franklin to determine the three-dimensional structure of DNA.

25 Concept Check 1. What is genetic material composed of? 2. What experiments helped identify the role of DNA? 3. What is the shape of a DNA molecule? 4. How is information organized in a DNA molecule? 5. What scientific investigation led to the discovery of DNA’s structure? 6. DNA is considered to be a relatively stable molecule. What gives it this stability, even though the hydrogen bonds between the nitrogen bases are easily broken?

26 Test Prep

27 1. Erwin Chargaff’s data on nitrogenous bases A. suggested that DNA bases are paired. B. suggested that DNA was a tightly coiled helix. C. suggested that bases are found in equal amounts in DNA. D. proved that DNA’s structure was similar to a twisted ladder.

28 2. Which part of a nucleotide contains genetic information? A.sugar molecules B.nitrogen base pairs C.phosphate molecules D.deoxyribose molecules

29 ` 3. DNA analysis reveals that a piece of DNA contains 40% adenine. What percentage of the DNA bases in a piece of DNA is guanine? A.20% B.60% C.40% D.10%

30 Section 2: Replication of DNA Preview DNA Replication DNA Replication DNA Replication DNA Replication Replication Proteins Replication Proteins Replication Proteins Replication Proteins Prokaryotic and Eukaryotic Replication Prokaryotic and Eukaryotic Replication Prokaryotic and Eukaryotic Replication Prokaryotic and Eukaryotic Replication Summary Summary Summary

31 DNA Replication Because DNA is made of two strands of complementary base pairs, if the strands are separated then each strand can serve as a pattern to make a new complementary strand. Because DNA is made of two strands of complementary base pairs, if the strands are separated then each strand can serve as a pattern to make a new complementary strand. The process of making a copy of DNA is called DNA replication. The process of making a copy of DNA is called DNA replication. In DNA replication, the DNA molecule unwinds, and the two sides split. Then, new bases are added to each side until two identical sequences result. In DNA replication, the DNA molecule unwinds, and the two sides split. Then, new bases are added to each side until two identical sequences result.

32 DNA Replication, continued As the double helix unwinds, the two complementary strands of DNA separate from each other and form Y shapes. These Y- shaped areas are called replication forks. As the double helix unwinds, the two complementary strands of DNA separate from each other and form Y shapes. These Y- shaped areas are called replication forks. At the replication fork, new nucleotides are added to each side and new base pairs are formed according to the base-pairing rules. At the replication fork, new nucleotides are added to each side and new base pairs are formed according to the base-pairing rules. Each double-stranded DNA helix is made of one new strand of DNA and one original strand of DNA. Each double-stranded DNA helix is made of one new strand of DNA and one original strand of DNA.

33 DNA Replication Click to animate the image.

34 Replication Proteins The replication of DNA involves many proteins that form a machinelike complex of moving parts. Each protein has a specific function. The replication of DNA involves many proteins that form a machinelike complex of moving parts. Each protein has a specific function. Proteins called DNA helicases unwind the DNA double helix during DNA replication. These proteins wedge themselves between the two strands of the double helix and break the hydrogen bonds between the base pairs. Proteins called DNA helicases unwind the DNA double helix during DNA replication. These proteins wedge themselves between the two strands of the double helix and break the hydrogen bonds between the base pairs. Proteins called DNA polymerases catalyze the formation of the DNA molecule by moving along each strand and adding nucleotides that pair with each base. Proteins called DNA polymerases catalyze the formation of the DNA molecule by moving along each strand and adding nucleotides that pair with each base.

35 Replication Proteins, continued DNA polymerases also have a “proofreading” function. DNA polymerases also have a “proofreading” function. During DNA replication, errors sometime occur and the wrong nucleotide is added to the new strand. During DNA replication, errors sometime occur and the wrong nucleotide is added to the new strand. If a mismatch occurs, the DNA polymerase can backtrack, remove the incorrect nucleotide, and replace it with the correct one. If a mismatch occurs, the DNA polymerase can backtrack, remove the incorrect nucleotide, and replace it with the correct one.

36 Visual Concept: DNA Replication Click above to play the video.

37 Prokaryotic and Eukaryotic Replication All cells have chromosomes, but eukaryotes and prokaryotes replicate their chromosomes differently. All cells have chromosomes, but eukaryotes and prokaryotes replicate their chromosomes differently. In prokaryotic cells, replication starts at a single site. In eukaryotic cells, replication starts at many sites along the chromosome. In prokaryotic cells, replication starts at a single site. In eukaryotic cells, replication starts at many sites along the chromosome. Prokaryotic cells usually have a single chromosome which is a closed loop attached to the inner cell membrane. Prokaryotic cells usually have a single chromosome which is a closed loop attached to the inner cell membrane. Replication in prokaryotes begins at one place along the loop. This site is called the origin of replication. Replication in prokaryotes begins at one place along the loop. This site is called the origin of replication.

38 Prokaryotic and Eukaryotic Replication, continued Two replication forks begin at the origin of replication in prokaryotes. Two replication forks begin at the origin of replication in prokaryotes. Replication occurs in opposite directions until the forks meet on the opposite side of the loop. Replication occurs in opposite directions until the forks meet on the opposite side of the loop. Eukaryotic cells often have several chromosomes which are linear and contain both DNA and protein. Eukaryotic cells often have several chromosomes which are linear and contain both DNA and protein. Replication starts at many sites along the chromosome. This process allows eukaryotic cells to replicate their DNA faster than prokaryotes. Replication starts at many sites along the chromosome. This process allows eukaryotic cells to replicate their DNA faster than prokaryotes.

39 Prokaryotic and Eukaryotic Replication, continued Two distinct replication forks form at each start site, and replication occurs in opposite directions. Two distinct replication forks form at each start site, and replication occurs in opposite directions. This process forms replication “bubbles” along the DNA molecule. This process forms replication “bubbles” along the DNA molecule. Replication bubbles continue to get larger as more of the DNA is copied. Replication bubbles continue to get larger as more of the DNA is copied.

40 Prokaryotic and Eukaryotic Replication A B C D E F G Click to animate the image.

41 Visual Concept: Replication Forks Increase the Speed of Replication

42 Prokaryotic and Eukaryotic Replication, continued The smallest eukaryotic chromosomes are often 10 times the size of a prokaryotic chromosome. Eukaryotic chromosomes are so long that it would take 33 days to replicate a typical human chromosome if there were only one origin of replication. The smallest eukaryotic chromosomes are often 10 times the size of a prokaryotic chromosome. Eukaryotic chromosomes are so long that it would take 33 days to replicate a typical human chromosome if there were only one origin of replication. Human chromosomes are replicated in about 100 sections that are 100,000 nucleotides long, each section with its own starting point. Human chromosomes are replicated in about 100 sections that are 100,000 nucleotides long, each section with its own starting point. Because eukaryotic cells have multiple replication forks working at the same time, an entire human chromosome can be replicated in about 8 hours. Because eukaryotic cells have multiple replication forks working at the same time, an entire human chromosome can be replicated in about 8 hours.

43 Summary In DNA replication, the DNA molecule unwinds, and the two sides split. Then, new bases are added to each side until two identical sequences result. In DNA replication, the DNA molecule unwinds, and the two sides split. Then, new bases are added to each side until two identical sequences result. The replication of DNA involves many proteins that form a machinelike complex of moving parts. The replication of DNA involves many proteins that form a machinelike complex of moving parts. In prokaryotic cells, replication starts at a single site. In eukaryotic cells, replication starts at many sites along the chromosome. In prokaryotic cells, replication starts at a single site. In eukaryotic cells, replication starts at many sites along the chromosome.

44 Concept Check 1. How does DNA replicate, or make a copy of itself? 2. What are the roles of proteins in DNA replication? 3. How is DNA replication different in prokaryotes and eukaryotes?

45 Test Prep

46 4. During protein synthesis, transfer RNA (tRNA)‏ A.produces a new RNA molecule. acts as a “start” signal for protein synthesis. acts as a “start” signal for protein synthesis. C.produces protein subunits by translating the codons on mRNA. D.delivers the instructions for making a protein to the site of translation.

47 5. The immediate result of a mistake in transcription would most likely be A.a different cell. B.a different gene. C.a different protein. D.a different set of alleles.

48 Use the diagram shown below to answer the next question. 6. What is the function of the structure labeled A? A. separating DNA strands A. separating DNA strands B. reconnecting DNA strands B. reconnecting DNA strands C. checking the new DNA strands for errors C. checking the new DNA strands for errors D. adding nucleotides to make new DNA strands D. adding nucleotides to make new DNA strands

49 Section 3: RNA and Gene Expression Preview An Overview of Gene Expression An Overview of Gene Expression An Overview of Gene Expression An Overview of Gene Expression RNA: A Major Player RNA: A Major Player RNA: A Major Player RNA: A Major Player Transcription: Reading the Gene Transcription: Reading the Gene Transcription: Reading the Gene Transcription: Reading the Gene The Genetic Code: Three-Letter “Words” The Genetic Code: Three-Letter “Words” The Genetic Code: Three-Letter “Words” The Genetic Code: Three-Letter “Words” Translation: RNA to Proteins Translation: RNA to Proteins Translation: RNA to Proteins Translation: RNA to Proteins Complexities of Gene Expression Complexities of Gene Expression Complexities of Gene Expression Complexities of Gene Expression Summary Summary Summary

50 Key Ideas, continued What are the major steps of translation? What are the major steps of translation? Do traits result from the expression of a single gene? Do traits result from the expression of a single gene?

51 An Overview of Gene Expression DNA provides the original information from which proteins are made in a cell, but DNA does not directly make proteins. DNA provides the original information from which proteins are made in a cell, but DNA does not directly make proteins. Ribonucleic acid, or RNA, is a second type of nucleic acid which takes the information from DNA and makes proteins. Ribonucleic acid, or RNA, is a second type of nucleic acid which takes the information from DNA and makes proteins. Gene expression is the manifestation of genes into specific traits. Gene expression is the manifestation of genes into specific traits.

52 An Overview of Gene Expression, continued Gene expression produces proteins by transcription and translation. This process takes place in two stages, both of which involve RNA. Gene expression produces proteins by transcription and translation. This process takes place in two stages, both of which involve RNA. The first stage of gene expression is called transcription. Transcription is the process of making RNA from the information in DNA. The first stage of gene expression is called transcription. Transcription is the process of making RNA from the information in DNA. Transcription is similar to copying (transcribing) notes from the board (DNA) to a notebook (RNA). Transcription is similar to copying (transcribing) notes from the board (DNA) to a notebook (RNA).

53 An Overview of Gene Expression, continued The second stage of gene expression is called translation. Translation uses the information in RNA to make a specific protein. The second stage of gene expression is called translation. Translation uses the information in RNA to make a specific protein. Translation is similar to translating a sentence in one language (RNA, the nucleic acid “language”) to another language (protein, the amino acid “language”). Translation is similar to translating a sentence in one language (RNA, the nucleic acid “language”) to another language (protein, the amino acid “language”).

54 Gene Transcription and Translation

55 RNA: A Major Player All of the steps in gene expression involve RNA. All of the steps in gene expression involve RNA. In cells, three types of RNA complement DNA and translate the genetic code into proteins. In cells, three types of RNA complement DNA and translate the genetic code into proteins. Like DNA, RNA is made of nucleotide subunits linked together. Like DNA, RNA is made of nucleotide subunits linked together. RNA differs from DNA in three ways. First, RNA usually is composed of one strand of nucleotides rather than two strands. RNA differs from DNA in three ways. First, RNA usually is composed of one strand of nucleotides rather than two strands.

56 RNA: A Major Player, continued Second, RNA nucleotides contain the five- carbon sugar ribose rather than the sugar deoxyribose. Second, RNA nucleotides contain the five- carbon sugar ribose rather than the sugar deoxyribose. Third, RNA nucleotides have a nitrogenous base called uracil (U) instead of the base thymine (T). Third, RNA nucleotides have a nitrogenous base called uracil (U) instead of the base thymine (T). Uracil (U) is complementary to adenine (A) whenever RNA pairs with another nucleic acid. Uracil (U) is complementary to adenine (A) whenever RNA pairs with another nucleic acid.

57 Visual Concept: Ribonucleic Acid (RNA)‏ Click above to play the video.

58 RNA: A Major Player, continued The three main types of RNA which play a role in gene expression are messenger RNA, transfer RNA, and ribosomal RNA. The three main types of RNA which play a role in gene expression are messenger RNA, transfer RNA, and ribosomal RNA. Messenger RNA (mRNA) is produced when DNA is transcribed into RNA. Messenger RNA (mRNA) is produced when DNA is transcribed into RNA. The mRNA carries instructions for making a protein from a gene and delivers the instructions to the site of translation. The mRNA carries instructions for making a protein from a gene and delivers the instructions to the site of translation.

59 RNA: A Major Player, continued At the site of translation, transfer RNA (tRNA) “reads” the instructions carried by the mRNA, then translates the mRNA sequence into protein subunits called amino acids. At the site of translation, transfer RNA (tRNA) “reads” the instructions carried by the mRNA, then translates the mRNA sequence into protein subunits called amino acids. Ribosomal RNA (rRNA) is an RNA molecule that is part of the structure of ribosomes. Ribosomal RNA (rRNA) is an RNA molecule that is part of the structure of ribosomes. Ribosomes are the cellular structure where protein production occurs. Ribosomes are the cellular structure where protein production occurs.

60 Visual Concept: Types of RNA

61 Transcription: Reading the Gene During transcription, the information in a specific region of DNA (a gene) is transcribed, or copied, into mRNA. During transcription, the information in a specific region of DNA (a gene) is transcribed, or copied, into mRNA. Transcription is carried out by a protein called RNA polymerase. Transcription is carried out by a protein called RNA polymerase. Transcription begins when RNA polymerase binds to the specific DNA sequence in the gene that is called the promoter. Transcription begins when RNA polymerase binds to the specific DNA sequence in the gene that is called the promoter. RNA polymerase then unwinds and separates the two strands of the double helix to expose the DNA bases on each strand. RNA polymerase then unwinds and separates the two strands of the double helix to expose the DNA bases on each strand.

62 Transcription: Reading the Gene, continued RNA polymerase moves along the bases on the DNA strand and adds complementary RNA bases as it “reads” the DNA of the gene. RNA polymerase moves along the bases on the DNA strand and adds complementary RNA bases as it “reads” the DNA of the gene. As RNA polymerase moves down the DNA strand, a single strand of mRNA grows. As RNA polymerase moves down the DNA strand, a single strand of mRNA grows. Behind the moving RNA polymerase, the two strands of DNA close up and re-form the double helix. Behind the moving RNA polymerase, the two strands of DNA close up and re-form the double helix.

63 Visual Concept: Transcription Click above to play the video.

64 Transcription: Reading the Gene, continued Transcription is not the same process as replication. Transcription is not the same process as replication. In transcription, a new molecule of RNA is made from the DNA. In DNA replication, a new molecule of DNA is made from the DNA. In transcription, a new molecule of RNA is made from the DNA. In DNA replication, a new molecule of DNA is made from the DNA.

65 Transcription

66 The Genetic Code: Three-Letter “Words” A three-nucleotide sequence is called a codon. Each codon corresponds to 1 of 20 amino acids. A three-nucleotide sequence is called a codon. Each codon corresponds to 1 of 20 amino acids. Codons act as a start or stop signal for translation. Codons act as a start or stop signal for translation. There are 64 mRNA codons. Each codon specifies only one amino acid, but several amino acids have more than one codon. There are 64 mRNA codons. Each codon specifies only one amino acid, but several amino acids have more than one codon. This system of matching codons and amino acids is called the genetic code. The genetic code is based on codons that each represent a specific amino acid. This system of matching codons and amino acids is called the genetic code. The genetic code is based on codons that each represent a specific amino acid.

67 Codons in mRNA

68 Translation: RNA to Proteins Translation occurs in a sequence of steps, involves three kinds of RNA, and results in a complete polypeptide. Translation occurs in a sequence of steps, involves three kinds of RNA, and results in a complete polypeptide. Translation takes place in the cytoplasm, where tRNA, rRNA, and mRNA interact to assemble proteins. Translation takes place in the cytoplasm, where tRNA, rRNA, and mRNA interact to assemble proteins. A specific amino acid is added to one end of each tRNA. The other end of the tRNA has an anticodon. A specific amino acid is added to one end of each tRNA. The other end of the tRNA has an anticodon. An anticodon is a three-nucleotide sequence on tRNA that is complementary to an mRNA codon. An anticodon is a three-nucleotide sequence on tRNA that is complementary to an mRNA codon.

69 Translation: RNA to Proteins, continued The mRNA joins with a ribosome and tRNA. The mRNA joins with a ribosome and tRNA. A tRNA molecule that has the correct anticodon and amino acid binds to the second codon on the mRNA. A tRNA molecule that has the correct anticodon and amino acid binds to the second codon on the mRNA. A peptide bond forms between the two amino acids, and the first tRNA is released from the ribosome. A peptide bond forms between the two amino acids, and the first tRNA is released from the ribosome. The ribosome then moves one codon down the mRNA. The ribosome then moves one codon down the mRNA.

70 Visual Concept: Ribosomes

71 Translation: RNA to Proteins, continued The amino acid chain continues to grow as each new amino acid binds to the chain and the previous tRNA is released. The amino acid chain continues to grow as each new amino acid binds to the chain and the previous tRNA is released. This process is repeated until one of three stop codons is reached. A stop codon does not have an anticodon, so protein production stops. This process is repeated until one of three stop codons is reached. A stop codon does not have an anticodon, so protein production stops. Many copies of the same protein can be made rapidly from a single mRNA molecule because several ribosomes can translate the same mRNA at the same time. Many copies of the same protein can be made rapidly from a single mRNA molecule because several ribosomes can translate the same mRNA at the same time.

72 Visual Concept: Codons in mRNA

73 Translation: RNA to Proteins

74 Complexities of Gene Expression The relationship between genes and their effects is complex. Despite the neatness of the genetic code, every gene cannot be simply linked to a single outcome. The relationship between genes and their effects is complex. Despite the neatness of the genetic code, every gene cannot be simply linked to a single outcome. Some genes are expressed only at certain times or under specific conditions. Some genes are expressed only at certain times or under specific conditions. Variations and mistakes can occur at each of the steps in replication and expression. Variations and mistakes can occur at each of the steps in replication and expression. The final outcome of gene expression is affected by the environment of the cells, the presence of other cells, and the timing of gene expression. The final outcome of gene expression is affected by the environment of the cells, the presence of other cells, and the timing of gene expression.

75 Summary Gene expression produces proteins by transcription and translation. This process takes place in two stages, both of which involve RNA. Gene expression produces proteins by transcription and translation. This process takes place in two stages, both of which involve RNA. In cells, three types of RNA complement DNA and translate the genetic code into proteins. In cells, three types of RNA complement DNA and translate the genetic code into proteins. During transcription, the information in a specific region of DNA (a gene) is transcribed, or copied, into mRNA. During transcription, the information in a specific region of DNA (a gene) is transcribed, or copied, into mRNA.

76 Summary, continued The genetic code is based on codons that each represent a specific amino acid. The genetic code is based on codons that each represent a specific amino acid. Translation occurs in a sequence of steps, involves three kinds of RNA, and results in a complete polypeptide. Translation occurs in a sequence of steps, involves three kinds of RNA, and results in a complete polypeptide. The relationship between genes and their effects is complex. Despite the neatness of the genetic code, every gene cannot be simply linked to a single outcome. The relationship between genes and their effects is complex. Despite the neatness of the genetic code, every gene cannot be simply linked to a single outcome.

77 Concept Check What is the process of gene expression? What is the process of gene expression? What role does RNA play in gene expression? What role does RNA play in gene expression? What happens during transcription? What happens during transcription? How do codons determine the sequence of amino acids that results after translation? How do codons determine the sequence of amino acids that results after translation?

78 Test Prep

79 Use the diagram shown below to answer the next question. 7. What is the control variable in this experiment? A. No hormone A. No hormone B. Hormone A B. Hormone A C. Hormone B C. Hormone B D. Hormone A+B D. Hormone A+B

80 8. What can you conclude about the effect Hormone B has on the rate of gene transcription compared to the control treatment? A. It increases gene transcription rate. A. It increases gene transcription rate. B. It decreases gene transcription rate. B. It decreases gene transcription rate. C. It does not change gene transcription rate compared to the control. C. It does not change gene transcription rate compared to the control. D. It has a smaller effect on transcription rate than Hormone A does. D. It has a smaller effect on transcription rate than Hormone A does.


Download ppt "DNA, RNA, and Proteins. Section 1: The Structure of DNA Preview DNA: The Genetic Material DNA: The Genetic Material DNA: The Genetic Material DNA: The."

Similar presentations


Ads by Google