Presentation is loading. Please wait.

Presentation is loading. Please wait.

3A/3B BIOMECHANICS

Similar presentations


Presentation on theme: "3A/3B BIOMECHANICS"— Presentation transcript:

1 3A/3B BIOMECHANICS

2 Movement principles and concepts Unit: 3A Scope & SequenceElaboration The principle of Inertia: Newton’s First Law of motionThe principle of Inertia: Newton’s First Law of motion; mass; contact forces Newton’s first law - Principle of Inertia Define the term vector. Relate to movement principles. The principle of Force-Time: muscle structure; mechanics of the musculo- skeletal system; mechanical characteristics of muscle (force-velocity; force-length; force-time); Newton’s Second Law of Motion. impulse – momentum relationship.muscle structure; mechanics of the musculo- skeletal system; mechanical characteristics of muscleNewton’s Second Law of Motion impulse – momentum relationship 2 nd Law of motion Impulse and momentum are related in that a change in momentum results in a proportional change in impulse. 1.muscle structure 2.mechanics of musculo skeletal system 3.muscle characteristics Models for biomechanical analysis.Identify possible models for analysis  e.g. Knudsen and Morrison – model for qualitative analysis. Physical Education Studies Elaboration Support Document, 2008

3 Segmental Interaction i.e. Kinematic chain Dynamical Systems Theory Balance Torque Angular Inertia (Rotational Inertia) Centre of Gravity Principle of Spin Bernoulli’s Principle Magnus Effect Fluid forces. surface drag i.e. swim suits skins form drag i.e. golf balls wave drag The principle of Balance: torque (moment of force); angular inertia (moment of inertia); equilibrium; centre of gravity.torquemoment of forcemoment of inertia The principle of Spin: fluids; fluid forces (buoyancy, drag, lift-Bernoulli’s Principle, the Magnus effect).buoyancydraglift-Bernoulli’s Principle The principle of Segmental Interaction: kinematic chain; corrections in body positioning and timing; dynamical systems theory.Segmental Interaction Movement principles and concepts Unit: 3B Physical Education Studies Elaboration Support Document, 2008

4 Skeletal Muscle surrounded by Epimysium Made up of bundles of muscle fibres (fascicles) surrounded by Perimysium Each fascicle contains individual muscle fibres, surrounded by Endomysium Fibres arranged into myofibrils, running parallel to each other & the length of the muscle fibre. Myofibrils contain a chain of sarcomeres, which are composed of actin and myosin filaments responsible for creating movement STRUCTURE OF SKELETAL MUSCLE

5 FORCE TIME FORCE TIME Which method would you prefer to use when catching a ball – a large force over a short period of time or a smaller peak force over a longer period of time? IMPULSE – MOMENTUM RELATIONSHIP

6 FLATTENING THE SWING ARC – Good technique can↑ contact time with a ball during collision sports May provide opportunity for ↑ force application in desired direction (hockey drag flick) May also provide ↑ accuracy, however usually occurs with a ↓ in force application IMPULSE AND ACCURACY Flattening the arc increases the likelihood of application of force to object in desired direction of travel by creating a zone of flat line motion A more curved arc reduces the likelihood of a successful outcome by reducing the opportunity for application of force in the intended direction of travel

7 Wides stance aims to maximise impulse by ↑ contact time, however force generated will be low compared to the hit IMPULSE AND SPORT Because impulse is force * time, we can change either one to suit the demands of the situation 1.INCREASING MOMENTUM In hockey a hit will place a large force, but over a small time. A drag flick would use a smaller force over a longer period of time. Either way the ball will increase its momentum Ideally we look to maximise both force and time, however the human body rarely allows for this to happen. Large backswing ensures maximum force is applied, but over a short period of time

8 IMPULSE AND SPORT 2.DECREASING MOMENTUM A cricket ball is hit towards a fielder. The fielder wishes to stop the ball (take momentum back to zero). – Would he apply a large force over a short period of time – Would he apply a small force over a longer period of time. Which method is likely to be more successful in catching the ball? Therefore in stopping a force we usually increase the time component so we can reduce the peak force!

9 MECHANICAL CHARACTERISTICS OF MUSCLE FORCE – VELOCITY – Muscle can create ↑ force with a ↓ velocity of concentric contraction – Muscle can resist ↑ force with a ↑ velocity of eccentric contraction Its easier to lift a heavy weight concentrically (upwards) slowly than it is quickly! Its easier to resist a heavy weight eccentrically (lowering) quickly rather than slowly CONCENTRICECCENTRIC

10 FORCE – VELOCITY MECHANICAL CHARACTERISTICS OF MUSCLE LENGTHENING VELOCITYSHORTENING VELOCITY0 FORCE During eccentric muscle contraction (lengthening), max force achieved during max velocity During concentric muscle contraction (shortening), max force achieved during minimum velocity During isometric contraction, force generated does not result in change of muscle length

11 LEVERS - ANATOMY Fulcrum – point around which the lever rotates Effort Arm – The part of the lever that the effort force is applied to (measured from the fulcrum to the point at which the force is applied) Resistance Arm – The part of the lever that applies the resistance force (measured from the fulcrum to the center of the resistance force) Input (Effort) Force – Force exerted ON the lever Output (Resistance) Force – Force exerted BY the lever FULCRUM EFFORT FORCE RESISTANCE FORCE RESISTANCE ARM EFFORT ARM

12 LEVERS - PRINCIPLES Velocity is greatest at the distal end of a lever – Longer the lever, greater the velocity at impact – E.g. Golf driver vs. 9 iron ↑ club length creates ↑ velocity and momentum at impact provided the athlete can control the longer lever – longer generally means↑ mass! Children often have difficulty with this and subsequently use shorter levers to gain better control – shorter cricket bat, tennis racquet etc

13 If the body’s mass is close to the axis of rotation, rotation is easier to manipulate. This makes the moment of inertia smaller and results in an increase in angular velocity. Moving the mass away from the axis of rotation slows down angular velocity. ANGULAR MOMENTUM – MOMENT OF INERTIA (rotational inertia) Try this on a swivel chair – see which method will allow you to spin at a faster rate? Note what happens when you move from a tucked position (left) to a more open position (right).

14 CONSERVATION OF ANGULAR MOMENTUM Angular momentum Moment of inertia Angular velocity TIME Angular velocity high, moment of inertia low Angular velocity low, moment of inertia high Angular momentum remains constant

15 TURBULENT FLOWLAMINAR FLOW High pressure at front of ball Small turbulent pocket (high pressure) at rear of ball Large turbulent pocket (low pressure) at rear of ball Turbulent flow causes the boundary layer separation to take place later. This causes a smaller pressure differential between the front and back of the ball as their is only a small pocket of turbulent wake at the rear of the ball Laminar flow causes the boundary layer separation to take place earlier. This causes a larger pressure differential between the front and rear of the ball as their is now a large pocket of turbulent wake at the back of the ball Late boundary layer separation Early boundary layer separation

16 STRIKING 1. PREPARATION Side on position to allow for greater force generation through sequential summation of force 3. FOLLOW THROUGH Follow through towards the target to prevent decceleration of final segment and ensure safe dissipation of force 2. EXECUTION PHASE Movement of big body parts (legs) followed by rotation of hips, shoulders, arms and then wrists Arms fully extend at point of contact to ensure longest possible lever at impact


Download ppt "3A/3B BIOMECHANICS"

Similar presentations


Ads by Google