Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mr. James Harty. A fracture is a break or interruption in the continuity of a bone.

Similar presentations

Presentation on theme: "Mr. James Harty. A fracture is a break or interruption in the continuity of a bone."— Presentation transcript:

1 Mr. James Harty

2 A fracture is a break or interruption in the continuity of a bone

3  Anatomical Bone involved  Radius, femur Part of bone involved  Diaphysis, metaphysis  neck/shaft/head

4  Direction of Fracture Line Transverse Oblique Spiral

5 All fractures are either UNDISPLACED or DISPLACED the deformity of the fracture

6 A communication between the fracture site and the skin surface All fractures are either CLOSED or OPEN (Compound)



9 More than two fragments (>1 fracture line) All fractures are either SIMPLE or COMMINUTED



12  A fracture occurring in a bone weakened by disease  Often refers to a fracture occuring in a bony secondary

13  A fracture occurring in immature bone  Cortex bends rather than breaks

14  Classified by Salter-Harris  Types I-V Type II is commonest

15  Type II fracture distal radius

16  “Look, Feel, Move”  Pain, tenderness  Swelling… bruising  Loss of function  Crepitus  Signs of blood loss  Injury to other structures

17  History  Examination  X-ray  Isotope Bone Scan  Specialised Imaging C.T. M.R.I.

18 Two planes Two joints Two occasions Two limbs Two opinions

19 Two planes Two joints Two occasions Two limbs Two opinions AP and Lateral +/- special views e.g. scaphoid

20 Two planes Two joints Two occasions Two limbs Two opinions Joint above and below for shaft fractures

21 Two planes Two joints Two occasions Two limbs Two opinions Repeat X-rays after an interval may show a fracture e.g. scaphoid, hip

22 Two planes Two joints Two occasions Two limbs Two opinions Comparative views of opposite limb e.g. elbow injuries in children

23 Two planes Two joints Two occasions Two limbs Two opinions Ask a radiologist or senior colleague!

24  haematoma  inflammatory exudate  new blood vessels (2-3 days)  bone forming cells  bridge of callus (cartilage, bone, fibrous tissue)  framework for bridging the gap  replaced by woven bone  remodelling along lines of stress

25  callus is the response to movement at fracture site  callus does not develop if the fracture is rigidly fixed with no movement: primary bone healing

26  Depends on many factors age bone type of fracture infection nutrition stimulation

27 Full assessment Reduction Immobilisation Maintenance of reduction Rehabilitation

28  restoring “normal” anatomy  not always necessary  open/closed  anaesthesia local/regional/general

29  general rule: joint above and joint below for shaft fractures  splints, plaster, braces  internal fixation plates, screws, wires, intramedullary rods  external fixation  traction

30  maintain until united  check x-rays  clinical and radiological evidence of union

31  starts A.S.A.P.  keep non-immobilised joints mobile  avoid muscle wasting  physiotherapy

32  problem: infection  prophylactic antibiotics appropriate to the injury  anti-tetanus cover  irrigation “the solution to pollution is dilution”  debridement: remove all dead tissue  skin cover

33  non-union/delayed union  multiple fractures  pathological fractures  fractures likely to slip  intra-articular fractures  nursing difficulties

34 Initial treatment – splinting and analgesia. Compound injuries – Antibiotic cover (usually cephalosporin +/- aminoglycoside if contaminated). -Tetanus cover.

35  Compound injuries must be debrided ASAP, should be within 6 hours.  Bone should be covered with tissue to prevent dessication.  Delayed primary closure of the wound, or “second look” procedure.

36  Aims – obtain union, maintain relative positions of knee and ankle joints.  Treatment options include:  Conservative.  Open Reduction and Internal Fixation.  Intra medullary nailing.  External fixation.

37  Casting may be considered if:  Isolated tibial fracture (fibula not involved).  >50% cortical overlap at # site. Closed reduction of displaced #’s and casting leads to significant incidence of non- union.  Less than 2cm initial shortening.

38  Usually used for intra–articular #’s involving knee or ankle rather than shaft #’s.  Periosteal stripping required.  Fracture site must be opened.  May be useful in Rx of non-union +/- bone grafting.


40  Probably preferred Rx of closed displaced tibial shaft fractures.  Union rates of near 100% for closed injuries.  Fracture site not opened during the procedure, reduced chance of infection.  More difficult in proximal shaft fractures.


42  Minimal soft tissue trauma.  Little foreign material in body, may be preferred in compound fractures.  Comminuted injuries.  Uniplanar, circular or combination of both (hybrid) fixators.



45  Compartment syndrome.  Pressure in muscular compartments rises above capillary pressure, ischaemia of tissues in affected compartment.  Patients complain of pain unrelieved by splinting and analgesia.

46  Pain on passive stretching is classic physical sign.  Normal distal pulses and neurology DO NOT exclude compartment syndrome.  Incidence NOT reduced in compound fractures (up to 9%).  ? May complicate nailing of fracture.

47  Union delayed union non-union  atrophic  hypertrophic  infected mal-union

48  skin compound wounds fracture blisters plaster sores pressure sores

49  muscle/tendon disuse, wasting avulsion late rupture (e.g. EPL, Colles’ fracture)

50  haemorrhage pelvis 6-8 units (hidden) femur 3-4 units hip 1-2 units  thrombosis/embolism esp. pelvic and hip fractures

51  infection local (compound or operated) respiratory urinary tract  growth disturbance epiphyseal fractures  stiffness keep non-injured joints mobile

52  neighbouring structures nerves vessels internal organs

53  Subcapital Femoral Fracture.  Over 100,000/year in the UK

54  Common in osteoporotic bone.  Majority of blood supply to head comes from the neck.  Elderly.  Almost 90% occur in >65 years.  Almost 75% occur in females.

55  The fibres are reflected back along the neck of the femur to the articular margin of the femoral head.  The reflected part constitutes the retinacular fibres, which bind down the nutrient arteries from the trochanteric anastomosis, along the neck to supply the head.

56  The head and intracapsular part of the neck receive blood from the trochanteric anastomosis.  Formed by descending superior gluteal artery with ascending branches of the medial and lateral circumflex femoral arteries.  Branches pass along the femoral neck with the retinacular fibres of the capsule.


58  Traumatic fracture  Pathological fracture

59  Severe hip pain associated with a fall.  Unable to weight-bear.  Shortened and externally rotated leg  AP/Lateral hip required.  Older – co-morbidity.

60 RS Garden, Preston Royal Infirmary, JBJS 1961




64  Blood supply lost through thrombosis or interrossoeus hypertension.  Marrow of head is replaced by fat, bone dies.  Zone of revascularisation, incomplete if large avascular area.  Zone of reossification – joint may collapse.  May -> secondary arthritis.

65  X-rays – may appear normal.  Radioisotope – dead area of femoral head surrounded by hyperaemic area of revascularisation.  MRI – one or more avascular areas.

66  ATLS principals of resuscitation  Co-morbidity  Work-up for theatre  Relevant Radiology - Diagnosis  Decide surgical/anaesthetic management  Informed Consent  Prophylactic Antibiotics  Anticoagulation  Early Mobilization  Discharge arrangements

67  Age and displacement  Co-Morbidity Undisplaced (Garden 1 & 2): 1. Cannulated Hip Screws. 2. DHS. 3. Hemi-Arthroplasty Displaced (Garden 3 & 4): 1. Hemi-Arthroplasty. 2. Total Hip Replacement occasionally if pre-existing OA.

68  AO Screws to hold femoral head in position Indications for Closed Reduction and Fixation:  Physiologically young patient: age < 65, working patient, good bone stock;  Demented elderly patient that requires total care;  Adequate closed reduction with no comminution or femoral neck defects;  Patient should be aware that with an inadequate closed reduction, then an open reduction or hemiarthroplasty will be required

69  Older patients – Hemiarthroplasty  Especially in Life Expectancy<5 years  One definitive operation.  Fractures may progressively displace.

70  Undisplaced Garden 1+2 – no vascular disruption  Lateral Approach  X-ray control  First part is a heavy plate fixed to lateral cortex of femur with cortical screws.  Second part is a rod which passes into the femoral head.  The threaded end crosses the fracture line to engage and hold the fracture line.  As the patient weight bears on the healing fracture the broken ends of the bone collapse into each other and compress the fracture.  The sliding-rod mechanism allows this to happen without the hip falling into varus.

71  Avascular Necrosis  Non-Union General  DVT/PE  Infection  Ulcers  Anaemia

72  Femoral Head survival unlikely.  Under fifty – reduce and pin immediately.  Older:<65 THR >65 Hemiarthroplasty

73 Austin Talley Moore, MD South Carolina 1899-1963  In September 1940, Austin Tally Moore and Harold Ray Bohlman, replaced the proximal 12 inches of a femur destroyed by a recurrent giant cell tumor with a custom-made prosthesis, Dr. Moore was encouraged to develop a new femoral head with a short stem for intramedullary fixation, and, the now legendary Austin Moore Hip was introduced in 1950.  Cemented Frederick Roeck Thompson, MD Texas 1907-1983  Son of the renowned reconstructive surgeon Dr. James E. Thompson of the University of Texas Medical Branch, Frederick R. Thompson, MD, designed - one of the first metal hips for use in hip fractures and salvage arthroplasties. The first F.R. Thompson Hip was implanted in January 1951, and is still in worldwide use today.  Uncemented

74  Poor general health that would prevent a second operation;  pathologic hip fractures  Parkinson's disease, hemiplegia, or other neurological disease;  Physiologic age > 70 yrs;  Severe osteoporosis without loss of primary trabeclae in femoral head  Inadequate closed reduction;  Displaced fracture which is several days old;  Pre-existing hip disease (DJD, RA, AVN); Contraindications:  Pre-existing sepsis  Young patient  Failure of internal fixation devices;  Pre-existing disease of the acetabulum;  Even without normal preoperative cartilagenous space, many patients will become symptomatic at 5 years due to metal induced degradation;


76 Mortality - mortality after hemiarthroplasty is 10 to 40% Fracture of the Femur: 4.5%  almost all fractures occur when surgeon attempts to reduce prosthesis;  most are non displaced and involve either greater trochanter or neck;  with femoral shaft fracture consider methy methacrylate combined with a long stem prosthesis; Post-op: sepsis: 2% to 20%  more common w/ posterior surgical approach;  infections may be superficial or deep Loosening and migration  presence of a radiolucent zone around the prosthesis;  if clinical signs and symptoms are present and loosening or migration is present, then consider revision to THR;erosion tends to occur in active pts with cemented Thompson hemiarthroplasty;

77  Dislocation  less than 10%.  more common with too much anteversion or retroversion, posterior capuslectomy, & excessive postoperative flexion or rotation with hip adducted

78 Mobility:  41% of elderly walk as well as pre-injury (Koval, Clin Orthop 1995). Mortality:  3% to 27% in first 3 months.  15-30% die within 1 year of fracture.

79  The goal of operative treatment is  Strong,stable fixation of the fracture fragments.

80  Dynamic Hip Screw:  Shorter plate (e.g 2-hole) can be used for some undisplaced intra- capsular #s.  Varying angles to suit angle atfemoral neck.  Sliding compression screw device allows collapse into position of stability.

81  Dynamic Condylar Screw (95 °):  Used in (paticularly) sub- troch #s.  In certain inter-trochanteric #s.

82  Early. 1. Femoral Shaft Fracture (intra- operative). 2. Respiratory, urinary tract infections. 3. Wound haematoma/infection. 3. DVT/Pulmonary embolus. Late. 1. Avascular necrosis. 2. Delayed/Non-Union. 3. Fixation Failure. 4. Post-traumatic arthritis. 5. Deep Infection

83 Other Complications:  Pressure sores.  Nerve palsies.  Prosthesis Dislocation.  Failure to mobilise & death.

84  Mobility: 41% of elderly walk as well as pre-injury (Koval, Clin Orthop 1995).  Mortality: 3% to 27% in first 3 months. 15-20% die within 1 year of fracture. Mortality risk over age-matched controls for up to 1 year post injury. Inter-trochanteric #s associated with greater morbidity & mortality.


86  Hip :Thomas test for fixed flexion deformity

87  Hip : Trendelenburg test

88  May be Primary due to intrnsic defect (mechanical,immune, vascular, cartilage)  Secondary - trauma, infection, congenital disorders.  Get loss of the bearing surface, followed by development of osteophytes and breakdown of the osteochondral junction

89  Subchondral cysts ( from microfractures)  Osteophyte formation  Joint space narrowing  Sclerotic bone formation

90 Joint space narrowing Subchondral cysts Sclerosis

91  Pain is the main + best indication  Degenerative joint disease – OA 1 o or 2 o  Rheumatoid Arthritis  Intractable pain  Stiffness  Deteriorating function

Download ppt "Mr. James Harty. A fracture is a break or interruption in the continuity of a bone."

Similar presentations

Ads by Google