Presentation is loading. Please wait.

Presentation is loading. Please wait.

ME 330 Manufacturing Processes CUTTING PROCESSES.

Similar presentations


Presentation on theme: "ME 330 Manufacturing Processes CUTTING PROCESSES."— Presentation transcript:

1 ME 330 Manufacturing Processes CUTTING PROCESSES

2 Overview of processes Cutting processes

3 Module 4a3 Principle of the process Structure and configuration Process modeling Defects Design For Manufacturing (DFM) Process variation

4 Major cutting processes  Mechanical processes 1.Machining and grinding (will be covered in later classes) 2.Shearing, blanking, and punching (sheet metalworking operations) 3.Ultrasonic machining (USM) 4.Water jet cutting (WJC or hydrojet) 5.Abrasive water jet cutting (AWJC or abrasive hydrojet) For sheet and plate Bulk

5 Definition of sheets and plates Sheets: thickness is 1/64” (0.04 mm) to 1/4” (6 mm). Plates: thickness is greater than: 1/4” (6mm)

6 Module 4a6 Principle of the process Structure and configuration Process modeling Defects Design For Manufacturing (DFM) Process variation

7 Module 4a7 Principle of cutting for sheets and plates: There is a shear stress induced on the surface of the cross section area of plates or sheets. The shearing stress causes the fracture of two parts.

8 Module 4a8 Principle of the process Structure/Configuration of the operation Process modeling Defects Design For Manufacturing (DFM) Process variation

9 Shearing, Blanking, and Punching Three principal configurations in press working that cut sheet metal:  Shearing  Blanking  Punching Different configurations of the manufacturing system or machine to generate shear stress, and they share the same principle of cutting.

10 Shearing Operation (a) Side view of the operation; (b) front view of the operation, equipped with inclined upper cutting blade

11 Blanking and Punching  Blanking (a) - sheet metal cutting to separate piece (called a blank) from surrounding stock  Punching (b) - similar to blanking except cut piece is scrap, called a slug

12 Shearing, Blanking, and Punching Generic configurations: punch, die, work piece

13 Shearing Generic configurations: punch, die, work piece

14  Components of a punch and die for a blanking operation Punch and Die in blanking and punching  Components of a punch and die for a punch operation Die Punch

15 Cost of tooling is concern  The cost for tooling is even higher than the press machine in itself.  Punch and die may need frequently change due to wear, which is a part of the reasons for the high cost of tooling.

16 Non-traditional Cutting Processes Cutting force is not generated by solid state force such as solid punch and solid die.

17 Non-traditional Processes: why  Newly developed metals and non ‑ metals with special properties that make them difficult or impossible to cut or machine by the solid force approach.  Complex part geometries that cannot readily be accomplished by conventional cutting and machining.  Avoid surface damage that often accompanies with the conventional machining and cutting.

18 Module 4a18 Principle of the process Structure and configuration Process modeling Defects Design For Manufacturing (DFM) Process variation

19 Major cutting processes  Mechanical processes 1.Machining and grinding (will be covered in later classes) 2.Shearing, blanking, and punching (sheet metalworking operations) 3.Ultrasonic machining (USM) 4.Water jet cutting (WJC or hydrojet) 5.Abrasive water jet cutting (AWJC or abrasive hydrojet)

20  Uses high pressure, high velocity stream of water directed at work surface for cutting Water Jet Cutting (WJC) or Hydro-jet Cutting The punch is a water stream

21 WJC & Applications  Usually automated by CNC or industrial robots to manipulate nozzle along desired trajectory.  Water also acts as a cooling agent.  Can cut complex shaped parts.  Used to cut narrow slits in flat stock such as plastic, textiles, composites, floor tile, carpet, leather, and cardboard.  Not suitable for brittle materials (e.g., glass). Intensity of water-jet is not enough, as opposed to the solid force, to make a clear-cut. The material tends to spreading around.

22 Abrasive Water Jet Cutting (AWJC)  Abrasive particles are added to jet stream for quicker cutting, which increases the intensity of water jet so that the high force can be created.  Suitable to cut metals.  Slower than laser cutting, but produces a cleaner finish.  Note that the water jet cut is tapered.

23 Major cutting processes  Thermal Energy Processes 1.Ram electric discharge machining (Ram EDM) 2.Wire electric discharge machining (Wire EDM) 3.Electron beam machining (EBM) 4.Laser beam machining (LBM) 5.Plasma arc cutting (PAC) or plasma arc machining (PAM) 6.Air carbon arc cutting 7.Oxyfuel Cutting (OFC) or flame cutting

24 Module 4a24 Principle of the process Structure and configuration Process modeling Defects Design For Manufacturing (DFM) Process variation

25 Electric Discharge Machining (EDM)

26 EDM Operation  One of the most widely used non-traditional processes  Shape of a finished work surface produced by a shape of electrode tool  Can be used only on electrically conducting work materials  Requires dielectric fluid, which creates a path for each discharge as fluid becomes ionized in the gap.  Metal is melted/vaporized by the series of electrical discharges  Can be very precise and produces a very good surface finish

27 Work Materials in EDM  Work materials must be electrically conducting  Hardness and strength of work material are not factors in EDM  Material removal rate depends on melting point of work material

28 Module 4a28 Principle of the process Structure and configuration Process modeling Defects Design For Manufacturing (DFM) Process variation

29  Special form of EDM uses small diameter wire as electrode to cut a narrow kerf in work Wire EDM

30 Operation of Wire EDM  Work is fed slowly past wire along desired cutting path.  CNC used for motion control.  While cutting, wire is continuously advanced between supply spool and take ‑ up spool to maintain a constant diameter.  Dielectric fluid is required.  Applied using nozzles directed at tool ‑ work interface or submerging work part

31 Wire EDM Applications  Ideal for stamping die components  Since kerf is so narrow, it is often possible to fabricate punch and die in a single cut  Other tools and parts with intricate outline shapes, such as lathe form tools, extrusion dies, and flat templates

32 Dental part cut from nitinol material by wire EDM

33  Uses the light energy from a laser to remove material by vaporization and ablation Laser Beam Machining (LBM) The punch is a light beam

34 LBM Applications  Drilling, slitting, slotting, scribing, and marking operations  Drilling small diameter holes ‑ down to mm (0.001 in)  Generally used on thin stock  Work materials: metals with high hardness and strength, soft metals, ceramics, glass and glass epoxy, plastics, rubber, cloth, and wood

35  Uses plasma stream operating at very high temperatures to cut metal by melting Plasma Arc Cutting (PAC) The punch is a plasma arc

36 Operation of PAC  Plasma = a superheated, electrically ionized gas  PAC temperatures: 10,000  C to 14,000  C (18,000  F to 25,000  F)  Plasma arc generated between electrode in torch and anode work piece  The plasma flows through water ‑ cooled nozzle that constricts and directs stream to desired location

37 Applications of PAC  Most applications of PAC involve cutting of flat metal sheets and plates.  Hole piercing and cutting along a defined path.  Comparable to laser cutting, but cuts are usually is more coarse.  Can cut any electrically conductive metal.  Most frequently cut metals: carbon steel, stainless steel, aluminum.

38 Important: Water Jet, Laser, Plasma  Need to start the cut away from the wanted cut to prevent a rough surface irregularity where the cut starts Starting cut Wanted cut

39 Summary of Cutting Processes for Sheets and Plates in terms of Quality & Cost Quality (In terms of tolerances & surface finish Cost Punching/ Blanking Plasma Water Jet Wire EDM Machining Laser

40 Comparison: sheet and plate cutting 1.Plasma 2.Laser 3.Waterjet

41 Comparison: sheet and plate cutting Main criteria for comparison: 1.Materials 2.Cost 3.Quality 4.Productivity

42 Comparison: sheet and plate cutting ProcessesMaterialThicknessQualityCostNote Plasma All electrically conductive materials Gauge to 2 in PoorLow Need high power Laser A variety of materials ¼ in and thinner Middle Problem with reflective materials WaterjetA variety of materials, usually soft material HighestHigh Cost: decided by the speed.

43 Major cutting processes  Electrochemical process: 1.Electrochemical Machining (ECM)

44 Module 4a44 Principle of the process Structure and configuration Process modeling Defects Design For Manufacturing (DFM) Process variation

45  Material removal by anodic dissolution, using electrode (tool) in close proximity to work but separated by a rapidly flowing electrolyte Electrochemical Machining (ECM) (-) (+)

46  Material removal by anodic dissolution, using electrode (tool) in close proximity to work but separated by a rapidly flowing electrolyte Electrochemical Machining (ECM).

47 Electrochemical Machining (ECM) Processes  Electrical energy used in combination with chemical reactions to remove material  Reverse of electroplating  Work material must be a conductor  Processes: 1.Electrochemical machining (ECM) 2.Electrochemical deburring (ECD) 3.Electrochemical grinding (ECG)

48 ECM Operation  Material is depleted from anode workpiece (positive pole) and transported to a cathode tool (negative pole) in an electrolyte bath  Electrolyte flows rapidly between two poles to carry off depleted material, so it does not plate onto tool  Electrode materials: Cu, brass, or stainless steel  Tool has inverse shape of part – Tool size and shape must allow for the gap

49 General benefits to manufacture parts by cutting from sheets and plates:  Fast to manufacture  Parts are low in cost  Helps drive costs for assembled products down  From low to high quantities  Simple to complex parts  Parts can later be formed (bent) to make more complex shapes

50 Summary  Sheet and plate cutting. Sheet and plate can be further processed by bending, forming, and drawing.  Principle of cutting. 1.Shear stress principle (solid force, water-jet) 2.Electric or light or plasma energy to thermal energy 3.Electric-chemical effect  Structure and configuration of each principle.  Mechanical process (blanking/shearing/punching, waterjet), Thermal process (EDM, Laser, Plasma), Chemical (ECM).  Constraints, pros and cons of each cutting process.


Download ppt "ME 330 Manufacturing Processes CUTTING PROCESSES."

Similar presentations


Ads by Google