Presentation is loading. Please wait.

Presentation is loading. Please wait.

PiCCO, CeVOX & LiMON Technology

Similar presentations

Presentation on theme: "PiCCO, CeVOX & LiMON Technology"— Presentation transcript:

1 PiCCO, CeVOX & LiMON Technology
Training in methodology, operation, application and safety

2 i Icons & Navigation More information (within the presentation)
More information (external documents) Video Back to start position Start animation

3 Overview A. Introduction B. Disposables C. Start-Up D. Measurement
E. Parameters F. PiCCO Strategies

4 User orientated presentation
Basic nurse training Basic medical training Intensive care nurse training Intensive care medical training 4

5 A. Introduction

6 History of the PiCCO-Technology
Intelligent hemodynamic monitoring Paradigm shift in hemodynamic monitoring Integration into patient monitoring monitors Most widely used less-invasive method PulsioFlex™ 2010 PiCCO2 2007 Dräger Smart Pod 2005 Philips PiCCO Module 2003 PiCCO plus 2002 PiCCO 1997 COLD System 1990

7 PULSION – Made in Germany
Medical device manufacturer based in Munich, founded in 1990 Production, development, management, marketing and distribution in Munich Subsidiaries in USA, France, Spain, United Kingdom, Benelux, Poland, Austria and Switzerland Distribution and licensing worldwide PULSION Head Office Clean Room Production

8 Why Monitor Hemodynamics?
What are hemodynamics? When is hemodynamic monitoring indicated? What types of hemodynamic monitoring are there? Why do you need the PiCCO-Technology? Ausbruch Grundlagenpräsentation Illustrative case

9 Key questions Is the O2 supply sufficient? Volume or catecholamine's ? Is there Pulmonary edema? Focus Therapeutische Konflikte / Explizit Indikationen statt Fachrichtungen 9

10 What are Hemodynamics? Maintenance of oxygen extraction! O2 uptake
O2 transport O2 delivery O2 consumption Gas exchange Macro-circulation Micro-circulation Cellular O2 consumption (Cardiac Output, Hb) (ScVO2, PDRICG*) Maintenance of oxygen extraction! * Parameter is not available in the USA

11 Intervention Options - + - + - + - + The correct decision, early!
Volume loading? Volume withdrawal? Diuretics? Vasopressors? Vasodilators? Inotropes? - + - + - + - + Respiration Volume Catecholamines Hemoglobin The correct decision, early!

12 Anatomy and physiology of the circulatory system
Determinants of cardiac output: Preload: - Blood volume, blood available for pumping Afterload: - Resistance, against which the heart must pump Contractility: - Performance of the heart muscle Zuordnung Parameter zu Gruppen, Was ist erw. Häm Mon Heart rate Circulatory model Flow is the result of: preload, afterload, contractility & heart rate

13 Hemodynamic Parameters
O2 Delivery DO2 Gas exchange? SaO2 O2 Transport? Hb Flow? CI Mixed- / Central- Venous O2-Saturation ScVO2 O2 Consumption VO2 DO2 VO2 ! x Stroke Volume SVI Frequency HR Basisworkshop Differenzierung der Picco Parameter zu den Hämodynamischen bzw. Volumetrischen Eckdaten. Position der Wichtigsten Parameter Interaktionsmechanismen. Preload GEDI SVV Afterload MAP SVRI Contractility dPmx, CPI* CFI*, GEF* Lung ELWI PVPI* * Parameters are not available in the USA

14 Treatment strategies Sepsis Cardiac surgery Cardiology
Neurosurgery/ Neurology /Stroke Burns Trauma Focus Therapeutische Konflikte / Explizit Indikationen statt Fachrichtungen

15 Monitoring and Diagnostic systems
CO - Monitoring Diagnostics Doppler TTE/TEE CT/ MRI LiDCO rapid Diagnostics & Advanced Monitoring Vigileo Bioimpendance PulsioFlex Vigilance / PAC PiCCO2

16 B. Disposables

17 PiCCO Catheter For advanced hemodynamic monitoring with the PiCCO-Technology Temperature sensor at the catheter tip for transpulmonary thermodilution Pressure lumen for arterial pressure measurement For use with PiCCO2 PiCCO plus Philips PiCCO technology module and Draeger Infinity® PiCCO SmartPod®.

18 PiCCO Catheter Placement Options
A. Axilla Adult 4F - 08cm A. Brachial Proximal 4F - 16cm Adult distal (cubital) 4F - 22cm Femoral Adult 5F - 20cm Children/peds 3F - 07cm Radial Adult 4F - 50cm* * Product is not available in the USA

19 PiCCO Catheter Safety Tips
Catheter handling according to hospital hygiene policy Latex and DEHP free Remove catheter if there are any signs of inflammation/infection

20 CeVOX Probe* Continuous monitoring of ScvO2 Convenient application
Access via already placed standard CVC Easy application Continuous ScvO2 within minutes Botschaft Nachrüsten einer Sonde im Cava * Product is not available in the USA

21 CeVOX Probe Selection and Placement
Remove slide clamp from CeVOX lumen Insert probe through the distal lumen of your CVC Secure CeVOX probe Luer lock to CVC distal Luer lock Tip of CeVOX probe is positioned 2.5 ± 0.5 cm past the tip of the CVC Connect the CeVOX probe to the optical module and perform an in-vivo calibration No stopcock / 3 way tap in-between probe and CVC! CeVOX-probe indicator Remove slide clamp from CeVOX lumen! * Product is not available in the USA

22 CeVOX* CVC-lumen Blood samples for in-vivo calibration are withdrawn from the Y-connector at the end of the CeVOX probe. (if not possible then from the next (medial) lumen from the same CVC) In-vitro calibration (pre-calibration) is not validated and raises hygiene issues Keep the CeVOX lumen open by continuous flow Online CVP via pressure transducer 3ml/h flush solution via syringe pump Infusions and medication can be administered via the CeVOX-CVC lumen No catecholamines! * Product is not available in the USA

23 CeVOX* probe safety tips
CeVOX probe and CVC handling according to hospital policy Latex and DEHP- free Remove CeVOX probe together with CVC if there are signs of inflammation at the injection site or signs of catheter related infection Remove slide clamp from CeVOX lumen! Do not place a stopcock (3 way tap) between probe and CVC * Product is not available in the USA

24 PiCCO Pressure Transducer

25 PiCCO Pressure Transducer
PV8215 PiCCO transducer incl. PV 4046 PV in1 PiCCO transducer with continuous AP and CVP incl. PV4046 PV8215CVP PiCCO transducer with discontinuous CVP incl. PV4046 PV CVP online transducer DPT-100 In-Line transducer PV4046 Injectate sensor housing PV82xx transducers are not available in all markets. Alternative products are available on request. Movie

26 Transducer Safety Tips
Change transducer according to hospital policy (usually around every 96 hours) PV82XX is Latex and DEHP free Use only PULSION approved transducers for PiCCO monitoring (CE-Conformity).

27 Injectate Sensor Housing PV4046
Measures the temperature of injectate at time of injection Included in PiCCO transducer kits Also available separately

28 C. Start-UP

29 Philips IntelliVue Model Dräger Infinity PiCCO SmartPod
Connectivity Philips IntelliVue Model PiCCO2 PiCCO plus Dräger Infinity PiCCO SmartPod 29

30 Connectivity PiCCO2 1a 1 2 3 4 1 1a 2 3 4 CeVOX Module LiMON Module*
LiMON Sensor Flush bag 1 CeVOX Module (Art. No. PC3015) LiMON Module* (Art. No. PC5100) Injectate-Sensor cable (Art. No. PC80109) Temperature cable (Art. No. PC80150) Pressure cable (Art. No. PMK-206) 1a 1a CeVOX probe via standard CVC 2 1 3 2 3 4 4 PiCCO catheter PiCCO monitoring kit * Product is not available in the USA 30

31 Connectivity Philips IntelliVue Module
Flush bag 1 Injectate -Sensor cable (Art. No. PC80109) Temperature cable (Art. No. PC80150) Pressure transducer cable (Art. No. PMK-206) 2 3 1 2 3 PiCCO catheter PiCCO monitoring Kit 31

32 Connectivity Dräger Infinity PiCCO SmartPod®
Flush bag 1 Injectate Sensor cable (Art. No. PC80109) Temperature cable (Art. No. PC80150) Pressure transducer cable (Art. No. PMK-206) 2 1 3 2 To bedside monitor Connected to the back 3 PiCCO catheter PiCCO monitoring kit 32

33 Connectivity PiCCO plus
PV8215 PV2015L20N 33

34 Philips IntelliVue Model Dräger Infinity PiCCO SmartPod
Conectivity Philips IntelliVue Model PiCCO2 PiCCO plus Dräger Infinity PiCCO SmartPod

35 PiCCO2 Connectivity Input Output CeVOX - ScvO2 Module
PiCCO – Thermodilution PiCCO – arterial pressure Online - CVP AUX port for connection to bedside monitoring CVP AP

36 PiCCO2 Connectivity Interface Mains Lead 2x USB LAN RS 232
Mains connection Potential- Equilization

37 Philips IntelliVue Model Dräger Infinity PiCCO SmartPod
Operation Philips IntelliVue Model PiCCO2 PiCCO2 Information PiCCO plus Dräger Infinity PiCCO SmartPod

38 Start-Up Power Switch On/Off button Alarm indicator
Charge warning light PiCCO2 2 4 3 1 Blinking = charging Permanently on = Fully charged

39 Innovative visualizations Direct access buttons & dial knob
Screen layout Information bar Touch screen Real-time arterial waveform Parameter fields Innovative visualizations Graphical User Interface The screen is divided into different screen areas: Patient information bar Real Time Curve Parameter fields Direct Access Buttons Display Tabs Display Range Real time curve and parameter fields are always visible Direct access buttons & dial knob

40 Direct Access Buttons and Navigation Dial
On / Off Help Print Suspend alarm Back (to previous level) Back (to main screen) 1 2 3 4 5 6 40

41 Help Function - Press Help button to open the help screen Setup scheme

42 Help Function Parameter - information

43 Help Function Therapy algorithm

44 Help Function Help funktion
Physiological parameter model with intervention options

45 and the PiCCO2 serial number
Help Function How to contact PULSION and the PiCCO2 serial number

46 Help Function Press „Exit“ or “Next” to proceed to next screen

47 Zeroing of AP and CVP Zero pressures once per shift and as required
Manually enter CVP in mmHg Continuous CVP can be monitored via a second transducer

48 System Check 1 2 AP plausible? (PiCCO and patient monitor) 1 2
Systole identified? 3.. Blood temp (TB) plausible? 3 3

49 Configuration PiCCO2

50 PiCCO2 Supports Your Decisions
Spider Vision View the patient status at a glance Profile Detailed insight at a parameter level Spider: arms Setup of the spider in the Configuration screen Normal ranges: grey areas Continuous indexed parameters No scale Display Green - all parameters in normal range Orange - one parameter out of normal range Red - more than one parameter out of normal range Trends Clinical course & treatment success

51 Configuration of Parameters
Press on the parameter field on the right side of the screen to go to parameter configuration

52 Configuration of Alarms
80 65

53 Configuration of Normal and Target Values
Switch to target mode via Selection “Target Values” Enter your target values It is possible to adjust target ranges for each individual patient Target values Normal values

54 Configuration SpiderVision
Select the number of required arms Place the parameters onto the arms by: 1. Selecting a SpiderVision parameter 2. Touching the parameter label onto the Spider arm

55 Configuration Trend Screen
Customizable trend screen with up to 8 parameters Select: Trend period Trend graphic or Trend table

56 D. Thermodilution

57 Principles of the PiCCO-Technology
Injection t T Thermodilution Pulse contour analysis Calibration The PiCCO-Technology is a unique combination of two methods; Firstly the hemodynamic and volumetric status is determined by transpulmonary thermodilution (TD). Secondly arterial pulse contour is calibrated.

58 Thermodilution The indicator passes through heart and lungs.
Detection Injection The indicator passes through heart and lungs. CO, Preload and Lung water are measured. PiCCO2 Booklet

59 Pulse Contour Analysis
The second step is that arterial pulse contour is calibrated by TD - CO The systolic part of the curve, representing stroke volume, is calibrated. Each new TD automatically recalibrates the pulse contour PiCCO-PCCI is “beat to beat” Calibration also integrates the patients aortic compliance Injection t T Calibration P t

60 Workflow - Thermodilution
Philips IntelliVue Model PiCCO2 PiCCO plus Dräger Infinity PiCCO SmartPod

61 Start thermodilution Select the injectate volume
For an adult 15mls saline is recommended In the „Measurement“ menu you will find the recommended volume Press „Start“ 1 1 2 2 Auto – Thermodilution mode (x in a row)

62 Thermodilution When „Wait“ is displayed in the TD window the blood temperature profile is being calculated. Once the message ‘Inject xx ml’ appears, inject the saline bolus rapidly past the injectate sensor housing. The word ‘Injection’ indicates that the monitor has recognized the bolus injection. 3 The thermodilution curve appears in the TD window. 4 The results are highlighted in green in the table above the thermodilution curve. 4 2 3 1

63 Selection of results The TD results are averaged from the set of TD measurements. CI, GEDI and ELWI should be within 10% of each other Results that are outside this range should be excluded from the set of measurements. Measurements can be excluded by double clicking on the results. Excluded results are crossed out

64 Quality of the thermodilution
37° 36,7° 36,9° 36,8° Quality of thermodilution: Optimized when ∆T >0.3°C Good when ∆T >0.2°C Weak when ∆T <0.15°C ∆T = change in temperature ∆T =0.3°C Optimize the thermodilution by: More injection volume Colder injection Faster injection Raising blood temperature if hypothermic (after surgery) 37° 36,7° 36,9° 36,8° ∆T =0.14°C

65 ScvO2 Calibration PiCCO2

66 ScvO2 Calibration Press to start calibration
The quality indicator should show a medium to high signal Withdraw blood from the Y- connector of the CeVOX probe. Ensure that you get only blood and no infusion fluid. Do a venous blood gas sample and flush the lumen with saline afterwards. Press “Sample drawn” after withdrawing blood. Enter the results of the BGA . Press „Confirm“ If DO2 and VO2 are enabled you need to enter the SaO2 (SpO2) value ScVO2 CAL DO2 & VO2 Measurement

67 LiMON – PDRICG* Press to go to LiMON calibration.
Attach the LiMON sensor to a well perfused finger. Wait 3 minutes until the finger perfusion becomes adapted to the sensor. Ensure that the sensor is not subjected to strong direct light. If necessary cover the sensor during the measurement of the PDRICG SpO2 and perfusion level will be displayed. The signal should be stable. Press to calculate the ICG dose. Select target concentration: 0.25mg/Kg or 0.5mg/Kg Select the number and size of vials Use XX mls ‘water for injection’ ICG quantity: dose in mgs to inject Volume: Volume in mls to inject Calc * Parameter is not available in the USA

68 LiMON – PDRICG* Prepare the calculated ICG bolus Press ‘START’
4 2 3 5 Prepare the calculated ICG bolus Press ‘START’ “Wait” will be displayed until the signal is stable. Inject calculated volume of ICG. Curve detected will be displayed PDRICG reading will be displayed after 5 – 8 mins Time of next possible measurement will be displayed. 6 7 * Parameter is not available in the USA

69 E. - Parameters

70 Therapy control - + - + - + - + Maintenance of oxygen extraction
O2 uptake O2 transport O2 delivery O2 consumption Gas exchange Macro-hemodynamics Micro-circulation Cellular O2 consumption Options for Intervention - + - + - + - + Respiration Volume Catecholamine Hemoglobin

71 Main Parameters ScvO2: Adequate global tissue oxygenation?
CI: Adequate flow? GEDI: Adequate cardiac preload? SVV/PPV: Volume responsiveness? SVRI: Vasopressor therapy necessary? ELWI: Lung edema?

72 Monitoring Strategy 1. Identification of the problem
2. Identification of the cause 3. Coordination of suitable interventions 4. Goal directed therapy 5. Quality check

73 Hemodynamic parameters
O2 Delivery DO2 Gas exchange? SaO2 O2 Transport? Hb Flow? CI Mixed- / Central- Venous O2-Saturation ScVO2 O2 Consumption VO2 DO2 VO2 ! Organ function? If ScVO2 >75% PDRICG* - Liver x Stroke Volume SVI Frequency HR Preload GEDI SVV/PPV Afterload MAP SVRI Contractility dPmx, CPI* CFI*, GEF* Lung ELWI PVPI* * Parameters are not available in the USA

74 ScvO2 - Indicates insufficient tissue oxygenation
ScvO2 – Central venous oxygen saturation Imbalance between O2 delivery and O2 consumption? Measurement via standard CVC ScvO2 (via CVC) correlates with SvO2 (via Pulmonary Artery Catheter) O2 Delivery When oxygen supply does not match oxygen demand, the oxygen deficit rapidly causes cell and organ injury leading to organ failure and subsequent complications ScvO2 values outside the normal range indicates a threat to tissue oxygenation and necessitates advanced hemodynamic monitoring to verify the cause. CO Hemoglobin Arterial O2 saturation O2 Consumption Fever Stress Muscle work (shivering) ScvO2 ScvO % SvO %

75 Cardiac Output – Blood volume, amount of blood pumped by the heart per minute
CI – Cardiac Index (Thermodilution) PCCI – Pulse Contour Cardiac Index (Cont. Pulse Contour) SVI – Stroke Volume Index Cardiac Index indicates the global blood flow Cardiac Index is Heart Rate x Stroke Volume Index Stroke Volume depends on preload, afterload and contractility Cardiac Index is indexed to the Body Surface Area (BSA) CO Heart rate Afterload Contractility Stroke volume Preload PCCI 3-5 l/min/m2 SVI ml/m2

76 Preload Volume – Blood volume which fills the heart just prior to beating
GEDI – Global End-diastolic Volume Index Filling volume of all 4 heart chambers Adequate preload volume is necessary for an adequate CO GEDI is indexed to the PBSA* Volumetric preload assessment * Predicted Body Surface Area (normalized body surface area) GEDI ml/m2

77 Direct correlation between GEDI and CO
CI (l/min/m2) 7.5 Frank-Starling-Curve 5.0 Inotropes 2.5 Preload increase 200 400 600 800 1000 1200 1400 GEDI (ml/m2) Preload optimization (GEDI) will increase Cardiac Index (CI) to a defined maximum (top of the Frank-Starling-Curve) After preload optimization CI can be increased further by inotropes

78 Volume responsiveness – predicts the response of cardiac output to volume loading
SVV – Stroke Volume Variation PPV – Pulse Pressure Variation Respiratory fluctuations in the arterial pressure curve in fully controlled ventilated patients. High SVV/PPV (>10%) indicates the stroke volume will increase following preload volume loading At values >10% volume replacement can be useful Stroke volume (SV) SVV > 10% PPV > 10% SVV 0-10% PPV 0-10% Preload (GEDI) SVV < 10% PPV < 10%

79 SVV / PPV – Safety Tips SVV / PPV – can only be used as a volume responsive parameter under controlled conditions. Is the patient on fully controlled ventilation? Spontaneous breathing or assisted breathing may cause incorrect measurements. Is the patient in sinus rhythm? The arterial pressure curve cannot be used in arrhythmic patients. Is the arterial pressure curve free from artifacts? Artifacts such as coughing or dys-synchronisation with the ventilator. Sufficiently high tidal volume? In cases of low tidal volume, the effect of ventilation on the arterial pressure curve is inadequate. (usable with a tidal volume >= 8ml/KG* PBW). * Muller et al. The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness . ICM 2010; 36: De Backer et al. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. ICM 2005; 31:517–523

80 Lung water– water content of the lungs
ELWI – Extravascular Lung Water Index Measurement of the intracellular, interstitial and intra-alveolar water content of the lungs (not pleural effusion) Direct and easy bedside quantification and tracking of pulmonary edema ELWI = 19 ml/kg ELWI = 7 ml/kg ELWI 3-7 ml/kgPBW ELWI = 14 ml/kg ELWI = 8 ml/kg

81 Predicted Body Weight (PBW)
Absolute values (cardiac output, GEDV, EVLW) are indexed to the body surface area (BSA) and body weight (BW indexed) to make values comparable between patients. The size of the heart and lungs are proportional to ‘ideal’ BSA and ‘ideal’ weight, but not to actual BSA and weight KG GEDV and EVLW are indexed to ‘ideal’ BSA (PBSA) and ‘ideal’ weight (PBW). In order to avoid an underestimation of values in obese patients Cardiac output is indexed to the current BSA in order to ensure comparability to other systems. 81

82 Hydrostatic volume shift
CI 5 If preload is low, volume is given. Preload loading can increase CI to its maximum. Excessive preload loading will also increase the hydrostatic pressure in the vascular system. This can lead to an increase in lung water. 3 ELWI GEDI 7 3 GEDI

83 Hydrostatic vs. osmotic edema
Infusion Hydrostatic Edema Osmotic Edema Intravascular Extravascular Normal tissue permeability Disturbed tissue permeability Osmotically active particle (protein & salt) H2O

84 Differentiate between types of pulmonary edema
PVPI* – Pulmonary Vascular Permeability Index Provides a differentiated view of pulmonary edema: cardiac osmotic Corresponds to the ratio between lung water (EVLW) and pulmonary blood volume (PBV) * Parameter is not available in the USA Normal situation PVPI 1-3 EVLW PBV 1 PVPI =1 Cardiac lung edema PVPI 1-3 EVLW PBV 3 PVPI =1 Osmotic lung edema PVPI 3-5 PVPI* 1-3 Extravascular fluid / EVLW EVLW PBV 4 1 PVPI =4 Intravascular fluid / PBV

85 Afterload – Resistance against which the heart must overcome to eject blood
SVRI - Systemic Vascular Resistance Index Measurement of the resistance against which the heart must pump Depends on the degree of vasoconstriction Increased: Centralization, Vasopressor therapy, Cardiogenic shock Decreased: Septic shock, Anaphylactic shock . Pressure Flow (CO) Resistance = Vasoconstriction: Flow (CO) Pressure (RR) Vasodilation: Flow (CO) Pressure (RR) SVRI dyn/sec/m2

86 Contractility - Performance of the heart muscle
GEF* – Global Ejection Fraction Ratio of ejection to ventricular filling Measures global cardiac contractility GEF correlates well with LVEF (Echocardiography) * Parameter is not available in the USA 4 x SV GEF* = GEDV GEF* % LVEF – %

87 Contractility - Performance of the heart muscle
CFI* – Cardiac Function Index Index of the relationship between flow and cardiac preload Measures global cardiac performance * Parameter is not available in the USA CI 5 High contractility 4,9 7 4 Normal contractility CO CFI* = GEDV 3,5 9 5 2 1,5 6 Low contractility 2 3 CFI* 4,5 – 6,5 400ml ml ml GEDI

88 Contractility - Performance of the heart muscle
dPmx – Left Ventricular (LV) contractility Measures the contractility of the left ventricle to afterload Maximum pressure increase over time in the aorta (∆Pmax / ∆t) Trending parameter, no normal range NB: Preload and afterload both influence dPmx Steep pressure increase Flatter pressure increase High LV Contractility Low LV Contractility dPmx for a healthy heart

89 Contractility - Performance of the heart muscle
CPI* – Cardiac Power Index CPI is the left ventricular cardiac output (W) as a product of flow and pressure The strongest independent predictor of hospital mortality in cardiogenic shock * Parameter is not available in the USA Power = Watt Watt = 1 Joule/Second Power (Watt) = Current (V) x Amps (A) (x conversion factor) CPI* = MAP x CI (x ) CPI* 0.5 – 0.7 W/m²

90 The relationship between DO2 and VO2
Delivery: DO2I = CI x Hb x 1.34 x SaO2 SaO2 CO, Hb Oxygen uptake Oxygen transport Oxygen release Oxygen consumption S(c)vO2 Consumption: VO2I = CIxHbx1.34x(SaO2 – S(c)vO2) DO2 and VO2 indicate the relationship between O2 supply and O2 consumption If DO2 falls below a critical point, tissue hypoxia will occur O2 supply VO2 ml/min/m² Enough Too low! DO2I ml/min/m2 VO2I ml/min/m2 O2 transport capacity DO2 ml/min/m²

91 Liver perfusion / Splanchnic perfusion
PDRICG*– Plasma Disappearance Rate of Indocyanine Green (ICG) Shows the excretion of ICG dye from the blood by the liver Is a marker of global liver function and perfusion The value is decreased if: the liver cell function is impaired. the liver has insufficient perfusion. Highly prognostic regarding mortality * Parameter is not available in the USA Hepatocyte Distribution in blood Transport to the liver Portal vein Liver PDRICG* %/min ICG Injection Excretion by the liver Gall bladder Colon

92 F. PiCCO strategies

93 Therapy control

94 Doctor & Nurse Communication
Planning Phase Doctor: Examination and diagnosis Doctor: Treatment Decisions Implementation Phase Nurse: Execution of the treatment plan Plan Do Evaluation Phase Doctor: Follow up or redefinition of treatment Control Phase Nurse: Monitoring ongoing situation Act Check

95 Thank you for your attention!
I. Summary Thank you for your attention! Contact: PULSION Medical Systems AG Joseph-Wild-Str. 20 81829 Munich Germany Tel: +49 (0) – 0 Fax: +49 (0) – 18


97 Auto Thermodilution mode
In the configuration screen the Auto thermodilution function can be activated Option to select 3 – 5 measurements in a row, without having to press the start button each time

98 Selection of oxygen parameters
Visualization of DO2 and VO2 in real-time to monitor oxygen delivery and oxygen consumption (CI and ScvO2 must be monitored continuously) *Physically dissolved oxygen is ignored. Oxygenation

99 Patient admission Admission from a general ward:
5 days post-operative after a colon resection, no CVC, no A-line Vital signs GCS: somnolent Respiration: tachypnea Pulse: 120 NIBP 90/50 Temperature 39.8°C

100 Patient admission ECG Monitor heart rhythm SR
Monitor heart rate /min SpO2 > O2 mask with 5l/min Awareness of respiratory failure 95% Monitor O2-supply and respiration > Intubation

101 Basic Monitoring Can we identify the source of the shock?
Electrocardiogram (ECG) NIBP (RR) Pulse oximetry (SpO2) Can we identify the source of the shock? Can we control the patients circulation with this level of monitoring?

102 Standard Monitoring Invasive blood pressure monitoring A. Axilla
A. Brachial A. Radial A. Femoral Differentiation Central perfusion (Femoral, Brachial and Axilla) Peripheral perfusion (Radial)

103 Compensation mechanism
10:30 RR is decreasing! AP MAP 55mmHg MAP 65mmHg CI CI 3L/min CI 2L/min 10:00 10:30 10:22 Flow decreasing! The blood pressure gives only a delayed picture when a circulatory problem is occurring. Continuous CI responds to problems much earlier. Conventional parameters for monitoring circulation (RR + HR) may be meaningless or even misleading

104 Physiological model of the circulatory system

Download ppt "PiCCO, CeVOX & LiMON Technology"

Similar presentations

Ads by Google