Download presentation

2
**Optical Properties of Solids within WIEN2k**

Claudia Ambrosch-Draxl Institute for Theoretical Physics University Graz

3
**Outline Optics in WIEN2k Basics Program Examples Outlook**

light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem Basics program flow inputs Program Optics in WIEN2k outputs convergence results Examples Outlook Raman scattering beyond RPA

4
**Outline Optics in WIEN2k Basics Program Examples Outlook**

light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem Basics program flow inputs Program Optics in WIEN2k outputs convergence results Examples Outlook Raman scattering beyond RPA

5
**Properties & Applications**

Dielectric function Optical absorption Optical gap Exciton binding energy Photoemission spectra Core level spectra Raman scattering Compton scattering Positron annihilation NMR spectra Electron spectroscopy Light emitting diodes Lasers Solar cells Displays Computer screens Smart windows Light bulbs CDs & DVDs Excited States understand physics characterize materials tailor special properties

6
**Wavefunction vs. Density**

Hartree-Fock: ionization energies Excited States Koopman's theorem DFT: Lagrange parameters Janak's theorem auxiliary functions

7
**Light – Matter Interaction**

Response to external electric field E Polarizability: Linear approximation: susceptibility c Optical Properties conductivity s dielectric tensor Fourier transform:

8
**Light Scattering Optical Properties band structure Energy w EF w E S**

intraband transition interband transition Energy wave vector EF w band structure E S w Optical Properties

9
**The Dielectric Tensor Optical Properties**

Free electrons: Lindhard formula Bloch electrons: interband intraband Optical Properties Interband contribution: independent particle approximation, random phase approximation (RPA)

10
**Optical "Constants" Optical Properties Complex dielectric tensor:**

Kramers-Kronig relations Optical Properties Optical conductivity: Complex refractive index: Reflectivity: Absorption coefficient: Loss function:

11
**Intraband Contributions**

Drude-like terms Dielectric Tensor: Metals Optical conductivity: Plasma frequency:

12
Sumrules Optical Properties

13
**Symmetry Dielectric Tensor triclinic monoclinic (a,b=90°) orthorhombic**

tetragonal, hexagonal cubic

14
**Magneto-optics Example: Ni**

without magnetic field, spin-orbit coupling: cubic KK Example: Ni with magnetic field ‖z, spin-orbit coupling: tetragonal KK KK

15
**Open Questions Excited State Properties Approximations used:**

Ground state: Local Density Approximation (LDA) Generalized Gradient Approximation (GGA) Excited State Properties Excited state: Interpretation within one-particle picture Interpretation of excited states in terms of ground state properties Electron-hole interaction ignored (RPA) Where do possible errors come from? How to treat excited states ab initio?

16
**The Band Gap Problem Ionization energy Electro-affinity Band gap**

shift of conduction bands: scissors operator many-body perturbation theory: GW approach

17
**Outline Optics in WIEN2k Basics Program Examples Outlook**

light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem Basics program flow inputs Program Optics in WIEN2k outputs convergence results Examples Outlook Raman scattering beyond RPA

18
**Program Flow Optics in WIEN2k SCF cycle converged potential kgen**

dense mesh eigenstates lapw1 Fermi distribution lapw2 Optics in WIEN2k momentum matrix elements optic dielectrix tensor components joint Re e Im e optical coefficients broadening scissors operator kram

19
**"optic" Inputs al.inop ni.inop (magento-optics)**

number of k-points, first k-point Emin, Emax: energy window for matrix elements number of cases (see choices below) 1 Re <x><x> OFF unsymmetrized matrix elements written to file? ni.inop (magento-optics) Inputs number of k-points, first k-point Emin, Emax: energy window for matrix elements number of cases (see choices below) Re <x><x> Re <z><z> Im <x><y> OFF Choices: Re <x><x> Re <y><y> Re <z><z> Re <x><y> Re <x><z> Re <y><z> Im <x><y> Im <x><z> Im <y><z>

20
**"joint" Inputs al.injoint 1 18 lower and upper band index**

Emin, dE, Emax [Ry] eV output units eV / Ry switch number of columns to be considered broadening for Drude model choose gamma for each case! Inputs SWITCH 0...JOINT DOS for each band combination 1...JOINT DOS sum over all band combinations 2...DOS for each band 3...DOS sum over all bands 4...Im(EPSILON) 5...Im(EPSILON) for each band combination 6...INTRABAND contributions 7...INTRABAND contributions including band analysis

21
**"kram" Inputs al.inkram si.inkram 0.1 broadening gamma**

0.0 energy shift (scissors operator) 1 add intraband contributions 1/0 12.6 plasma frequency 0.2 gamma(s) for intraband part as number of colums as number of colums Inputs si.inkram broadening gamma energy shift (scissors operator) ....

22
**Outline Optics in WIEN2k Basics Program Examples Outlook**

light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem Basics program flow inputs Program Optics in WIEN2k outputs convergence results Examples Outlook Raman scattering beyond RPA

23
Outputs

24
Convergence Example: Al

25
Sumrules Example: Al

26
Loss Function Example: Al

27
**Outline Optics in WIEN2k Basics Program Examples Outlook**

light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem Basics program flow inputs Program Optics in WIEN2k outputs convergence results Examples Outlook Raman scattering beyond RPA

28
**Raman Intensities YBa2Cu3O7: A1g Modes Theory Experiment**

CAD, H. Auer, R. Kouba, E. Ya. Sherman, P. Knoll, M. Mayer, Phys. Rev. B 65, (2002).

29
**Current Developments Kohn-Sham theory Generalized Kohn-Sham theory**

Gradient Corrections (GGA) LDA + U Exact Exchange (EXX) non-local effects correlation effects band gap problem Generalized Kohn-Sham theory Self-interaction correction (SIC) Non-local exchange / screened exchange Time dependent DFT response to time-dependet perturbation Many-body perturbation theory band gap problem excitonic effects GW + Bethe-Salpeter equation

30
**The Bethe–Salpeter Equation**

effective Schrödinger equation for the electron-hole pair Beyond RPA

31
**Thank you for your attention!**

Similar presentations

OK

Peter De á k Challenges for ab initio defect modeling. EMRS Symposium I, 2008 1 Challenges for ab initio defect modeling Peter.

Peter De á k Challenges for ab initio defect modeling. EMRS Symposium I, 2008 1 Challenges for ab initio defect modeling Peter.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on high level languages examples Ppt on natural numbers examples Sources of water for kids ppt on batteries Business intelligence microsoft ppt online Ppt on machine translation conference Download ppt on corrosion of metals Ppt on x ray machine Ppt on radio station Ppt on classical economics and unemployment Display ppt online