Presentation is loading. Please wait.

Presentation is loading. Please wait.

中國醫藥大學普通生物學 課程整合簡介 周昌弘 中央研究院院士 中國醫藥大學講座教授 中華民國 103 年 3 月 5 日 中山醫學大學「八大行星課程統合共識營」

Similar presentations


Presentation on theme: "中國醫藥大學普通生物學 課程整合簡介 周昌弘 中央研究院院士 中國醫藥大學講座教授 中華民國 103 年 3 月 5 日 中山醫學大學「八大行星課程統合共識營」"— Presentation transcript:

1 中國醫藥大學普通生物學 課程整合簡介 周昌弘 中央研究院院士 中國醫藥大學講座教授 中華民國 103 年 3 月 5 日 中山醫學大學「八大行星課程統合共識營」

2 對普通生物學的期待 一、從高中生物的課綱內容以提升教學內容  提升不同科系學生將來對生物之興趣  醫學系、生物科技系、藥學系、公共衛生學院  普通生物學的內涵應超出高中課程,不要讓學生向 在上高中課一樣  儘量舉與生活或健康有關的內容

3 二、生物學對未來生命科學的貢獻  醫中牙藥  其他系  引導學生對基礎科學的興趣,以奠定未來成為 一優秀生物學家的能力 對普通生物學的期待

4 三、增加教師與學生互動關係  輔導學生對生物學的了解  改進普通生物學的實驗課  助教需充分準備實驗內容  建立良好 TA 制度 對普通生物學的期待

5 CMU 「普通生物學」設計  普通生物學 甲 : 生物科技學系;醫學系  第一學期 2+1 ( 上課 + 實驗 )  第二學期 2+1 ( 上課 + 實驗 )  普通生物學 乙 : 非生物科系及醫學系  第一學期 2+1 ( 上課 + 實驗 )  第二學期 2 ( 只上課 )  普生甲乙均採用 Campbell 等作者之書  甲 : 完整版  乙 : 精簡版

6 CMU 「普通生物學」沿革 「普通生物學(甲)」課程規劃討論會議( ) 重要決議: 98 學年度「普通生物學(甲)」(生物科技系)課程規劃。 「普通生物學(乙)」課程規劃討論會議( ) 重要決議: 98 學年度「普通生物學(乙)」課程規劃,以 Campbell, Reece, Taylor, Simon, Dickey : Biology 6th Concepts & Connections ( 2009 )為上課教科書。 97 學年度第 9 次生科院院務會議提案討論( ) 重要決議: 1. 擇期舉行「普通生物學(甲)、(乙)」課程討論會議。 2. 8 月底舉辦教學觀摩會議,包括普通生物學(甲)(乙)。~continues~

7 CMU 「普通生物學」沿革 99 學年度第 2 次普通生物學課程會議( ) 重要決議: 學年度(上下學期)「普通生物學」課程討論。 學年起使用新版課本( Campbell )。 「普通生物學」課程規劃討論會議( ) 重要決議: 1. 規劃 99 學年度普通生物學甲、乙版本課程。(醫中牙藥學系於 100 學年度普通生 物學課程採用版本甲四學分) 2. 增加北港校區 office hour 時間,以利同學提出問題。 「普通生物學(甲)(乙)組」教學觀摩會( )~continues~

8 CMU 「普通生物學」沿革 101 學年度第 1 次「普通生物學」課程規劃小組會議( ) 重要決議: 102 學年度(上下學期)「普通生物學」課程討論。 校主管會議提案決議( ) 重要決議: 1. 專業共同課程與基礎科學課程外審作業。( 102 年 7 月後辦理) 2. 普通生物學舉行「新生大會考」。(舉行時間: 102 年 9 月 2 日) 100 學年度第 1 次普通生物學課程會議( ) 重要決議: 學年度(上下學期)「普通生物學」課程討論。 2. 建議自 102 學年度規劃 4 學分( 2/2 )或 6 學分( 3/3 )之正課及實驗課程。

9 「普通生物學教學工作坊」 ( ) 時間主題講員 2 : 00-2 : 20 引言周昌弘講座教授 2 : 20-2 : 40 Photosynthesis 翁仁憲教授 2 : 40-3 : 00 Chemical Context of Life 周聖杰副教授 3 : 00-3 : 20 Large Biological Molecules 高銘欽教授 3 : 20-3 : 30 Breaking Time 3 : 30-3 : 50 Cellular Respiration 黃雯雯副教授 3 : 50-4 : 10 Cell Communication 鄭志鴻教授 4 : 10-4 : 30 Regulation of Gene Expression 徐媛曼教授 4 : 30-4 : 50 綜合討論周昌弘講座教授 4 : 50- 歸賦

10 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson © 2011 Pearson Education, Inc. Lectures by Erin Barley Kathleen Fitzpatrick Cellular Respiration and Fermentation Chapter 9 生物科技學系:黃雯雯副教授

11 Figure 9.2 Light energy ECOSYSTEM Photosynthesis in chloroplasts Cellular respiration in mitochondria CO 2  H 2 O  O2 O2 Organic molecules ATP powers most cellular work ATP Heat energy

12 Catabolic Pathways and Production of ATP The breakdown of organic molecules is exergonic 釋能 Fermentation 醱酵 is a partial degradation of sugars that occurs without O 2 Aerobic respiration 有氧呼吸 consumes organic molecules and O 2 and yields ATP Anaerobic respiration 無氧呼吸 is similar to aerobic respiration but consumes compounds other than O 2 © 2011 Pearson Education, Inc.

13 The Stages of Cellular Respiration: A Preview Harvesting of energy from glucose has three stages –Glycolysis 糖解作用 (breaks down glucose into two molecules of pyruvate 丙酮酸 ) –The citric acid cycle 檸檬酸循環 (completes the breakdown of glucose) –Oxidative phosphorylation 氧化磷酸化作用 (accounts for most of the ATP synthesis) © 2011 Pearson Education, Inc.

14 Figure Electrons carried via NADH Glycolysis Glucose Pyruvate CYTOSOL MITOCHONDRION ATP Substrate-level phosphorylation

15 Figure Electrons carried via NADH Electrons carried via NADH and FADH 2 Citric acid cycle Pyruvate oxidation Acetyl CoA Glycolysis Glucose Pyruvate CYTOSOL MITOCHONDRION ATP Substrate-level phosphorylation

16 Figure Electrons carried via NADH Electrons carried via NADH and FADH 2 Citric acid cycle Pyruvate oxidation Acetyl CoA Glycolysis Glucose Pyruvate Oxidative phosphorylation: electron transport and chemiosmosis CYTOSOL MITOCHONDRION ATP Substrate-level phosphorylation Oxidative phosphorylation

17 Figure 9.9a Glycolysis: Energy Investment Phase ATP Glucose Glucose 6-phosphate ADP Hexokinase 1 Fructose 6-phosphate Phosphogluco- isomerase 2

18 Figure 9.9b Glycolysis: Energy Investment Phase ATP Fructose 6-phosphate ADP 3 Fructose 1,6-bisphosphate Phospho- fructokinase 45 Aldolase Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate To step 6 Isomerase

19 Figure 9.9c Glycolysis: Energy Payoff Phase 2 NADH 2 ATP 2 ADP NAD  + 2 H  2 P i 3-Phospho- glycerate 1,3-Bisphospho- glycerate Triose phosphate dehydrogenase Phospho- glycerokinase 67

20 Figure 9.9d Glycolysis: Energy Payoff Phase 2 ATP 2 ADP H 2 O Pyruvate Phosphoenol- pyruvate (PEP) 2-Phospho- glycerate 3-Phospho- glycerate Phospho- glyceromutase Enolase Pyruvate kinase

21 Figure 9.10 Pyruvate Transport protein CYTOSOL MITOCHONDRION CO 2 Coenzyme A NAD  + H  NADH Acetyl CoA 123

22 Figure NADH 1 Acetyl CoA Citrate Isocitrate  -Ketoglutarate Succinyl CoA Succinate Fumarate Malate Citric acid cycle NAD  NADH FADH 2 ATP + H  NAD  H2OH2O H2OH2O ADP GTPGDP P i FAD CoA-SH CO2CO2 CO2CO2 Oxaloacetate

23 Concept 9.4: During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis Following glycolysis and the citric acid cycle, NADH and FADH 2 account for most of the energy extracted from food These two electron carriers donate electrons to the electron transport chain, which powers ATP synthesis via oxidative phosphorylation © 2011 Pearson Education, Inc.

24 Figure 9.13 NADH FADH 2 2 H  + 1 / 2 O 2 2 e  H2OH2O NAD  Multiprotein complexes (originally from NADH or FADH 2 ) I II III IV Free energy (G) relative to O 2 (kcal/mol) FMN Fe  S FAD Q Cyt b Cyt c 1 Cyt c Cyt a Cyt a 3 Fe  S

25 Chemiosmosis: The Energy-Coupling Mechanism Electron transfer in the electron transport chain causes proteins to pump H + from the mitochondrial matrix to the intermembrane space H + then moves back across the membrane, passing through the proton, ATP synthase ATP synthase uses the exergonic flow of H + to drive phosphorylation of ATP This is an example of chemiosmosis 化學滲透, the use of energy in a H + gradient to drive cellular work © 2011 Pearson Education, Inc.

26 Figure 9.14 INTERMEMBRANE SPACE Rotor Stator HH Internal rod Catalytic knob ADP + P i ATP MITOCHONDRIAL MATRIX

27 Figure 9.15 Protein complex of electron carriers (carrying electrons from food) Electron transport chain Oxidative phosphorylation Chemiosmosis ATP synth- ase I II III IV Q Cyt c FAD FADH 2 NADH ADP  P i NAD  HH 2 H  + 1 / 2 O 2 HH HH HH 21 HH H2OH2O ATP

28 Figure 9.16 Electron shuttles span membrane MITOCHONDRION 2 NADH 6 NADH 2 FADH 2 or  2 ATP  about 26 or 28 ATP Glycolysis Glucose 2 Pyruvate Pyruvate oxidation 2 Acetyl CoA Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis CYTOSOL Maximum per glucose: About 30 or 32 ATP

29 Types of Fermentation Fermentation consists of glycolysis plus reactions that regenerate NAD +, which can be reused by glycolysis Two common types are alcohol fermentation and lactic acid fermentation © 2011 Pearson Education, Inc.

30 Figure ADP 2 ATP Glucose Glycolysis 2 Pyruvate 2 CO 2 2  2 NADH 2 Ethanol 2 Acetaldehyde (a) Alcohol fermentation (b) Lactic acid fermentation 2 Lactate 2 Pyruvate 2 NADH Glucose Glycolysis 2 ATP 2 ADP  2 P i NAD 2 H   2 P i 2 NAD    2 H 

31 Figure 9.18 Glucose CYTOSOL Glycolysis Pyruvate No O 2 present: Fermentation O 2 present: Aerobic cellular respiration Ethanol, lactate, or other products Acetyl CoA MITOCHONDRION Citric acid cycle

32 The Evolutionary Significance of Glycolysis Ancient prokaryotes are thought to have used glycolysis long before there was oxygen in the atmosphere Very little O 2 was available in the atmosphere until about 2.7 billion years ago, so early prokaryotes likely used only glycolysis to generate ATP Glycolysis is a very ancient process © 2011 Pearson Education, Inc.

33 Figure 9.19 Carbohydrates Proteins Fatty acids Amino acids Sugars Fats Glycerol Glycolysis Glucose Glyceraldehyde 3- P NH 3 Pyruvate Acetyl CoA Citric acid cycle Oxidative phosphorylation

34 Regulation of Cellular Respiration via Feedback Mechanisms Feedback inhibition is the most common mechanism for control If ATP concentration begins to drop, respiration speeds up; when there is plenty of ATP, respiration slows down Control of catabolism is based mainly on regulating the activity of enzymes at strategic points in the catabolic pathway © 2011 Pearson Education, Inc.

35 Figure 9.20 Phosphofructokinase Glucose Glycolysis AMP Stimulates    Fructose 6-phosphate Fructose 1,6-bisphosphate Pyruvate Inhibits ATPCitrate Citric acid cycle Oxidative phosphorylation Acetyl CoA

36

37 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson © 2011 Pearson Education, Inc. Regulation of Gene Expression Chapter Dr. Yuan-Man Hsu

38 Biology Unit 1: The Chemistry of Life Unit 2: The Cell Unit 3: Genetics Unit 4: Mechanisms of Evolution Unit 5: The Evolutionary History of Biological Diversity Unit 6: Plant Form and Function Unit 7: Animal Form and Function Unit 8: Ecology © 2011 Pearson Education, Inc. 38

39 Unit 3: Genetics Chap 13 Meiosis and Sexual Life Cycles Chap 14 Mendel and the Gene Idea Chap 15 The Chromosomal Basis of Inheritance Chap 16 The Molecular Basis of Inheritance Chap 17 From Gene to Protein Chap 18 Regulation of Gene Expression Chap 19 Viruses Chap 20 Biotechnology Chap 21 Genomes and Their Evolution © 2011 Pearson Education, Inc. 39

40 普通高級中學必修科目「基礎生物 (1) 」課程綱要 © 2011 Pearson Education, Inc. 40

41 普通高級中學選修科目「生物」課程綱要 © 2011 Pearson Education, Inc. 41

42 Concept Bacteria often respond to environmental change by regulating transcription Eukaryotic gene expression is regulated at many stages Noncoding RNAs play multiple roles in controlling gene expression A program of differential gene expression leads to the different cell types in a multicellular organism Cancer results from genetic changes that affect cell cycle control © 2011 Pearson Education, Inc. 42

43 Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences in cell types RNA molecules play many roles in regulating gene expression in eukaryotes © 2011 Pearson Education, Inc. 43

44 Concept 18.1: Bacteria often respond to environmental change by regulating transcription Natural selection has favored bacteria that produce only the products needed by that cell Gene expression in bacteria is controlled by the operon model Negative gene regulation Positive gene regulation © 2011 Pearson Education, Inc. Operon Promoter Genes RNA polymerase Operator Polypeptides A BC A B C 44

45 Concept 18.2: Eukaryotic gene expression is regulated at many stages All organisms must regulate which genes are expressed at any given time –Regulation of Chromatin Structure Histone Modifications, DNA Methylation, Epigenetic Inheritance –Regulation of Transcription Initiation Organization of a Typical Eukaryotic Gene, Coordinately Controlled Genes in Eukaryotes, Nuclear Architecture and Gene Expression © 2011 Pearson Education, Inc. 45

46 Concept 18.2: Eukaryotic gene expression is regulated at many stages All organisms must regulate which genes are expressed at any given time –Mechanisms of Post-Transcriptional Regulation RNA Processing, mRNA Degradation, Initiation of Translation, Protein Processing and Degradation In multicellular organisms regulation of gene expression is essential for cell specialization –differential gene expression © 2011 Pearson Education, Inc. 46

47 Concept 18.3: Noncoding RNAs play multiple roles in controlling gene expression Only a small fraction of DNA codes for proteins, and a very small fraction of the non-protein-coding DNA consists of genes for RNA such as rRNA and tRNA A significant amount of the genome may be transcribed into noncoding RNAs (ncRNAs) Noncoding RNAs regulate gene expression at two points: mRNA translation and chromatin configuration © 2011 Pearson Education, Inc. 47

48 Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism During embryonic development, a fertilized egg gives rise to many different cell types Cell types are organized successively into tissues, organs, organ systems, and the whole organism Gene expression orchestrates the developmental programs of animals © 2011 Pearson Education, Inc. 48

49 Concept 18.5: Cancer results from genetic changes that affect cell cycle control The gene regulation systems that go wrong during cancer are the very same systems involved in embryonic development Types of genes associated with cancer –Cancer can be caused by mutations to genes that regulate cell growth and division –Tumor viruses can cause cancer in animals including humans © 2011 Pearson Education, Inc. 49

50 © 2011 Pearson Education, Inc. 50

51 © 2011 Pearson Education, Inc. 51

52 「普通生物學教學工作坊」 ( )

53 「大會考」各院成績分析 ■ 0-19 ■ ■ ■ ■

54 普通生物學「期末問卷」 (省略)

55 謝 敬 請 指 教


Download ppt "中國醫藥大學普通生物學 課程整合簡介 周昌弘 中央研究院院士 中國醫藥大學講座教授 中華民國 103 年 3 月 5 日 中山醫學大學「八大行星課程統合共識營」"

Similar presentations


Ads by Google