Download presentation

Presentation is loading. Please wait.

Published byPedro Dott Modified over 2 years ago

1
Turbulent Mixing During an Admiralty Inlet Bottom Water Intrusion Philip Orton Hats off to the A-Team: Sally, Erin, Karin and Christie! Profs extraordinaire: Rocky and Parker!

2
Motivation - Why Study Mixing/ Dissipation sigma-t (kg m -3 ) Echo Sounder Backscatter, 120 kHz, 04-Aug-2006, 11:28h Power/ importanceDifficulty for modeling sorted profile raw profile

3
Plan-of-Attack Methods - dissipation/mixing estimation Along- and across-channel comparisons Consistency check: Observed dissipation vs Expected? Dynamical explanation for weak mixing H 0 : Mixing during our study was spatially uniform test: Compute buoyancy flux at many locations in along- and across-channel surveys

4
Field Program 8 8W 300kHz ADCP Seabird 19 CTD Echo Sounder Full transect Two half-transects Cross-channel survey Bush Point

5
Fine-Structure Instability Turbulence Analysis A “Thorpe scale” analysis of ~138 CTD density profiles The Thorpe scale (L T ) is the rms re- sorting distance of all points in an overturning “patch”. Method gives comparable results to microstructure instrumentation (e.g. Klymak and Gregg, JPO 34:1135, 2004). Matlab mixing toolbox for CTD fine-structure and Lowered-ADCP sorted profile raw profile

6
Mixing & Dissipation from Thorpe Scales where a ≈ 1 (Klymak and Gregg; Peters and Johns, 2004) We assume a mixing efficiency, ≈ 0.22, reasonable for stratified conditions (discussion in Macdonald and Geyer, JGR 109: C05004, 2004). buoyancy frequency, N = [(g/ d /dz)] 0.5, is computed over overturn patch heights. Dissipation of turbulent kinetic energy: eddy diffusivity: Station 16, 8/4 15:17h, slack after greater flood Assume: (a) L O = L T, (b) L O is length-scale for TKE, (c) N is time-scale for dissipation.

7
Richardson Number, Ri = N 2 /Shear 2 Ri crit = 0.25 Transect #1 FLOOD! Transect #2 weak ebb Transect #3 weak flood

8
Buoyancy Flux, B = N 2 K Transect #1 FLOOD! Transect #2 weak ebb Transect #3 weak flood

9
Along-Channel Variability? W/kg

10
Across-Channel Variability? W/kg

11
Consistency Check: Tidal Dissipation Dissipation mean (away from bed) over entire study was 6.4 x 10 -4 W/m 3 Hudson has mid-water column values of 10 -2 (spring) to 10 -3 W/m 3 (neap; Peters, 1999) NOAA study (Lavelle et al., 1988) showed total tidal dissipation averages ~500 MW I estimate the total dissipation during our study as overturns + loglayer = 12 + 112 = 124 MW –assumed log layer dissipation ( ~ U * 3 ) –quad drag law: C D = 0.002 for velocity at 5-10m height This is reasonable, as our tidal range was ~3/4 the mean, U ~ range, ~ U 3, and (3/4) 3 = 0.4

12
Why Weak Mixing in Most Places? Results suggest low mixing because tidal straining is overcoming mixing horizontal Richardson (Stacey) number, Ri x ebbEBB

13
Summary Was mixing during our study spatially uniform? –Cross-channel variability: results were inconclusive –Along-channel variability: No -- mixing was elevated by a factor of O(10) in at least one hotspot Tidal dissipation estimates were consistent with a prior study, downscaled for below avg. tidal range Tidal straining can explain the low mixing that occurred in most of the estuary Excellent conditions for a bottom water intrusion!

17
Overturn Analysis: Quality Control To avoid mistaking noise for overturns, each “resorting region” must pass various tests: 1) the rms ( t,sort - t,raw ) in a patch must be greater than the instrument noise ( = 0.002 kg m -3 ) 2) the T-S space tests of Galbraith and Kelley (J-Tech, 13:688, 1996) a) near-linearity in the T- relationship b) near-linearity in the S- relationship 3) rms run-length of overturn patch must be longer than 7 points total

18
Ambient Conditions Tides - end of a ~5 day period of weaker than normal tidal currents –Semidiurnal tidal range near annual low –Diurnal tidal range on the rise, but below average Winds light Riverflow into Puget Sound - [likely had an above average summertime flow]

Similar presentations

OK

Useful texts: Mann & Lazier, The Dynamics of Marine Ecosystems, Blackwell Science. Simpson, In: The Sea, vol 10, chapter 5. Simpson, In: The Sea, vol 11,

Useful texts: Mann & Lazier, The Dynamics of Marine Ecosystems, Blackwell Science. Simpson, In: The Sea, vol 10, chapter 5. Simpson, In: The Sea, vol 11,

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Neurological anatomy and physiology ppt on cells Ppt on soft skills training materials Ppt on lhasa Accounting standard 20 earning per share ppt online File type ppt on cybercrime definition Ppt on international financial management Ppt on nervous system Ppt on simple distillation and fractional distillation Ppt on solid state drives Ppt on contact and noncontact forces