Download presentation

Presentation is loading. Please wait.

Published byJabari Basting Modified over 2 years ago

1
Isometric ellipses In an isometric drawing, the object is viewed at an angle, which makes circles appear as ellipses. Holes Cylinders Example object – focus on eye piece. Inside (hole) and outside (cylinder) both appear elliptical in this sketch.

2
Sketching a Circle Draw a square whose sides are the diameter of the circle. At the center of each side define the point of tangency for the circle. Draw the diagonals of the square. Orient the paper so you can draw equal arcs to construct the circle

3
**Introduction to Isometric Projection**

CUBE Isometric Projection: One type of axonometric pictorial (3-D) projection ‘Iso-’ means ‘equal ‘metric projection’ means ‘a projection to a scaled measure’ The three dimensions are not only shown in one view, but also the dimensions can be scaled from this drawing START WITH A CUBE All of the normal drawing planes (top, front, side) are equally foreshortened or tilted, and all of the major axes (X, Y, Z) are at equal rotations from each other (120 degrees apart), as in the illustration above. And, because all of the major planes are equally foreshortened, all of the measurements in these planes are equal as well as shown above. This means that the same measuring scale may be used in drawing both the width, height, and depth of objects. Isometric means equal measure All planes are equally or proportionately shortened and tilted All the major axes (X, Y, Z) are 120 degrees apart

4
**Making an Isometric Sketch**

Defining Axis 30o 60o Isometric Axis Derive the axes from a vertex of the cube

5
**Ellipses Can be in Any of Three Planes**

Ellipse could appear in any one of the three planes (front, profile or side, horizontal or top) Major axis (long axis) of the ellipse will be along the long diagonal of the rectangle Minor axis (short axis) along the shorter diagonal. Note ellipse must have the correct orientation in the box. (Almost fills the box, if rotated 90 degrees, it would be incorrect for the plane of view.)

6
**Sketching an Isometric of a Hollow Pipe**

Isometric object without construction lines Note: Student product will have construction lines.

7
**Step 1 – Creating the Base Box**

Length Diameter Recall that the proper way to start an isometric sketch is to lightly sketch in the box within which the object will fit. Process will fairly closely follow that described in of Bertoline.

8
**Step 2 – Ellipse on Front Face**

- Corner to corner to get center Lines to Tangent Points - Lines to tangent points Tangent Points Note for students that just front part of box will be shown to keep it simple in the visuals. Sketch in lines corner to corner (along major and minor axis of ellipse) to get center point Sketch perpendicular lines through center point to get tangent points on outside box.

9
**Step 3 – Ellipse on Front Face**

Sketch in Arcs Tangent Points Sketch in smooth arcs to join the Tangent points on Major axis and minor axis. Radius of arc on the longer diagonal is shorter than the radius of arc on the shorter diagonal.

10
**Step 3 – Ellipse on Back Face and Profile**

Repeat for ellipse on rear face Draw Tangent Lines for Profile Complete Visible Part of Back Ellipse Note that in case on the rear side of the pipe, only a part of the ellipse is visible. So only the part which is visible is drawn with dark lines

11
**Step 4 – Ellipse for Hole on Front Face**

Create Box for Hole Sketch Ellipse Encourage student to leave in their light construction lines. Constructions lines not shown here to just add focus to what is being added at this step. Note that the construction line should be much lighter and thinner than the main object lines.

12
**Isometric of Hollow Pipe**

Isometric object without construction lines Note: Student product will have construction lines.

13
**Summary Technical drawings are an effective communication media**

Projections of various types can be used Isometric projections and creating isometric sketches has been introduced Assignments will emphasize simple isometric sketches Summarize the objectives of the session Will introduce more advanced isometrics and orthographics drawing in next class

14
Review Questions _______ sketches present the object in a single view, with all three dimensions represented _______ sketches present the object in a series of projections, each one showing only two of the objects’ three dimensions Which among the following is NOT an isometric axes (Hint: Use the Isometric Grid paper for reference)? Note on all REVIEW QUESTIONS slides: Have the students do individually and check with their partner. Will not be graded. This is for better understanding and making the students read the text book. Students could expect such questions in their mid-term and final. Answers will also be posted on WebCT. Answers: Pictorial (Axonometric/Isometric, Perspective, Oblique) Multiview/orthographic c) => spacing between any two axes can be 30, 60, 120, 240 only a) b) d) c) 120° 60° 240° 90°

15
**Tips for Drawing Assignments**

Follow Sketching and Text conventions. Title Information is required. Avoid labels on the sketch. Leave the construction lines – MUCH lighter and thinner than the finished lines Include centerlines on isometrics

16
**Tips for Drawing Assignments**

Do not try to shade drawing – this is not a pencil sketching class. Use grid paper. Try to sketch along grid lines. Practice sketching straight lines and curves on a grid sheet.

17
**Tips for Pictorial Views**

In pictorial views, hidden lines are not shown unless absolutely required for clarity, such as; Non-visible bottom of a blind hole Important feature of object not in direct view In pictorial views, holes or notches without bottom/end visible should be assumed to go completely through the object. Centerlines are to be shown on all isometric pictorials.

18
In Class Assignment Use Isometric Sketch Paper (ISP)

Similar presentations

OK

First-Year Engineering Program 1AU 2006 Engineering H191 Engineering Fundamentals and Laboratory I Week 01 Day 01 Graphics: The Language of Design.

First-Year Engineering Program 1AU 2006 Engineering H191 Engineering Fundamentals and Laboratory I Week 01 Day 01 Graphics: The Language of Design.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on wireless solar mobile charger Ppt on muscle physiology Ppt on drinking water alarm Free download ppt on self awareness Ppt on magnetic effect of electric current Ppt on power diode Ppt on resistance temperature detector problem Ppt on obesity diet medications Flexible oled display ppt online Ppt on networking related topics about global warming