Download presentation

Presentation is loading. Please wait.

1
**Differential Geometry of Surfaces**

Jordan Smith UC Berkeley CS284

2
**Outline Differential Geometry of a Curve**

Differential Geometry of a Surface I and II Fundamental Forms Change of Coordinates (Tensor Calculus) Curvature Weingarten Operator Bending Energy

3
**Differential Geometry of a Curve**

4
**Differential Geometry of a Curve**

Point p on the curve at u0 p C(u) p=C(u0)

5
**Differential Geometry of a Curve**

Tangent T to the curve at u0 p Cu C(u)

6
**Differential Geometry of a Curve**

Normal N and Binormal B to the curve at u0 B p Cu Cuu C(u) N

7
**Differential Geometry of a Curve**

Curvature κ at u0 and the radius ρ osculating circle B p Cu Cuu C(u) N

8
**Differential Geometry of a Curve**

Curvature at u0 is the component of -NT along T C(u0) C(u1) T N(u0) C(u) N(u1) NT

9
**Computing the Curvature of a Curve**

10
**Computing the Curvature of a Curve**

11
**Computing the Curvature of a Curve**

12
**Computing the Curvature of a Curve**

13
**Computing the Curvature of a Curve**

14
**Computing the Curvature of a Curve**

15
**Outline Differential Geometry of a Curve**

Differential Geometry of a Surface I and II Fundamental Forms Change of Coordinates (Tensor Calculus) Curvature Weingarten Operator Bending Energy

16
**Differential Geometry of a Surface**

S(u,v)

17
**Differential Geometry of a Surface**

Point p on the surface at (u0,v0) p S(u,v)

18
**Differential Geometry of a Surface**

Tangent Su in the u direction p Su S(u,v)

19
**Differential Geometry of a Surface**

Tangent Sv in the v direction Sv p Su S(u,v)

20
**Differential Geometry of a Surface**

Plane of tangents T Sv p T Su S(u,v)

21
**First Fundamental Form IS**

Metric of the surface S

22
**Differential Geometry of a Surface**

Normal N N Sv p T Su S(u,v)

23
**Differential Geometry of a Surface**

Normal section N Sv p T Su S(u,v)

24
**Differential Geometry of a Surface**

Curvature N Sv p T Su S(u,v)

25
**Differential Geometry of a Surface**

Curvature NT N Sv p T Su S(u,v)

26
**Second Fundamental Form IIS**

27
**Outline Differential Geometry of a Curve**

Differential Geometry of a Surface I and II Fundamental Forms Change of Coordinates (Tensor Calculus) Curvature Weingarten Operator Bending Energy

28
Change of Coordinates Sv p Su Tangent Plane of S

29
**Change of Coordinates Ss St Sv b θ p a Su**

Construct an Orthonormal Basis

30
Change of Coordinates Ss St Sv b θ p a Su First Fundamental Form

31
**Change of Coordinates Ss St Sv b T s u t θ v p a Su**

A point T expressed in (u,v) and (s,t)

32
**Outline Differential Geometry of a Curve**

Differential Geometry of a Surface I and II Fundamental Forms Change of Coordinates (Tensor Calculus) Curvature Weingarten Operator Bending Energy

33
Curvature Ss St Sv κT is a function of direction T b θ p a Su

34
Curvature Ss St Sv How do we analyze the κT function? b θ p a Su

35
**Curvature E1 E2 φ p Ss St Su Sv a b θ Eigen analysis of IIŜ**

Eigenvalues = {κ1,κ2} Eigenvectors = {E1,E2} Eigendecompostion of IIŜ

36
Curvature E1 E2 φ p Ss St Su Sv a b θ α

37
**Outline Differential Geometry of a Curve**

Differential Geometry of a Surface I and II Fundamental Forms Change of Coordinates (Tensor Calculus) Curvature Weingarten Operator Bending Energy

38
Weingarten Operator E1 E2 φ p Ss St Su Sv a b θ

39
Weingarten Operator

40
**Weingarten Operator If κ1≠ κ2**

else umbilic (κ1= κ2), chose orthogonal directions

41
**Outline Differential Geometry of a Curve**

Differential Geometry of a Surface I and II Fundamental Forms Change of Coordinates (Tensor Calculus) Curvature Weingarten Operator Bending Energy

42
Bending Energy

43
Bending Energy Minimizing = Minimizing

44
**Conclusion Curvature of Curves and Surfaces**

Computing Surface Curvature using the Weingarten Operator Minimizing Bending Energy Gauss-Bonnet Theorem

Similar presentations

Presentation is loading. Please wait....

OK

Chapter 10 Vector Calculus

Chapter 10 Vector Calculus

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on companies act 2013 vs companies act 1956 Ppt on power generation by speed breaker in roads Ppt on guru granth sahib ji Ppt on tribal group of india Ppt on singly linked list in c Ppt on pulse code modulation system Ppt on social media in india Sell your house quickly by appt only Ppt on historical places in delhi Ppt on number system for class 8