# Get a calculator!  How many parts are there to a triangle ? a b c  C Pardekooper AA BB CC.

## Presentation on theme: "Get a calculator!  How many parts are there to a triangle ? a b c  C Pardekooper AA BB CC."— Presentation transcript:

Get a calculator!

 How many parts are there to a triangle ? a b c  C Pardekooper AA BB CC

 tan  = opposite  Pardekooper adjacent

 Lets try setting up for tan   C Pardekooper tan  = opposite adjacent tan  = 8 6 10 8 6

 Lets try setting up for tan   C Pardekooper tan  = opposite adjacent tan  = 8 6 10 6 8

 Lets try setting up for tan   C Pardekooper tan  = opposite adjacent tan  = 12 5 13 12 5

 Lets try setting up for tan   C Pardekooper tan  = opposite adjacent tan  = 12 5 13 5 12

Pardekooper   Solve right triangle ABC if b=32,  A=25 o, and  C=90 o a b=32 c = 25 o = 90 o The sum of the angles of a triangle is 180 o. = 65 o A B C a c b AA BB CC  A+  B+  C = 180 o. 25 o +  B+90 o = 180 o.  B+115 o = 180 o  B = 65 o 65 o 32

  Solve right triangle ABC if b=32,  A=25 o, and  C=90 o a b=32 c = 25 o = 90 o = 65 o A B C a c =15 32 AA BB CC Pardekooper tan  = opposite adjacent tan25 0 = a 65 o 32 32   32 32tan25 0 = a 15 = a 15

  Solve right triangle ABC if b=32,  A=25 o, and  C=90 o a b=32 c = 25 o = 90 o = 65 o A B C c =15 32 AA BB CC Pardekooper We will find c tomorrow 65 o 15

 Now lets find  A  to the nearest degree.  C Pardekooper tan  = opposite adjacent tan  = 11 7 7  = tan -1 11 7  = 58 0

 Now lets find  B  to the nearest degree.  C Pardekooper tan  = opposite adjacent tan  = 11 7 7  = tan -1 7 11  = 32 0

Pardekooper Here comes the assignment

Assignment Workbook Page 401 all

Download ppt "Get a calculator!  How many parts are there to a triangle ? a b c  C Pardekooper AA BB CC."

Similar presentations