Presentation is loading. Please wait.

Presentation is loading. Please wait.

Get a calculator!  How many parts are there to a triangle ? a b c  C Pardekooper AA BB CC.

Similar presentations


Presentation on theme: "Get a calculator!  How many parts are there to a triangle ? a b c  C Pardekooper AA BB CC."— Presentation transcript:

1

2 Get a calculator!

3  How many parts are there to a triangle ? a b c  C Pardekooper AA BB CC

4  tan  = opposite  Pardekooper adjacent

5  Lets try setting up for tan   C Pardekooper tan  = opposite adjacent tan  =

6  Lets try setting up for tan   C Pardekooper tan  = opposite adjacent tan  =

7  Lets try setting up for tan   C Pardekooper tan  = opposite adjacent tan  =

8  Lets try setting up for tan   C Pardekooper tan  = opposite adjacent tan  =

9 Pardekooper   Solve right triangle ABC if b=32,  A=25 o, and  C=90 o a b=32 c = 25 o = 90 o The sum of the angles of a triangle is 180 o. = 65 o A B C a c b AA BB CC  A+  B+  C = 180 o. 25 o +  B+90 o = 180 o.  B+115 o = 180 o  B = 65 o 65 o 32

10   Solve right triangle ABC if b=32,  A=25 o, and  C=90 o a b=32 c = 25 o = 90 o = 65 o A B C a c =15 32 AA BB CC Pardekooper tan  = opposite adjacent tan25 0 = a 65 o   32 32tan25 0 = a 15 = a 15

11   Solve right triangle ABC if b=32,  A=25 o, and  C=90 o a b=32 c = 25 o = 90 o = 65 o A B C c =15 32 AA BB CC Pardekooper We will find c tomorrow 65 o 15

12  Now lets find  A  to the nearest degree.  C Pardekooper tan  = opposite adjacent tan  =  = tan  = 58 0

13  Now lets find  B  to the nearest degree.  C Pardekooper tan  = opposite adjacent tan  =  = tan  = 32 0

14 Pardekooper Here comes the assignment

15 Assignment Workbook Page 401 all


Download ppt "Get a calculator!  How many parts are there to a triangle ? a b c  C Pardekooper AA BB CC."

Similar presentations


Ads by Google