Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dr.G.Padmavati,Vimal Shah,Nitin Pal

Similar presentations


Presentation on theme: "Dr.G.Padmavati,Vimal Shah,Nitin Pal"— Presentation transcript:

1 Dr.G.Padmavati,Vimal Shah,Nitin Pal
Reliance Industries Limited BUTADIENE EXTRACTION Sanjay Rinke Dr.G.Padmavati,Vimal Shah,Nitin Pal

2 Agenda BASF NMP Process – VMD JSR Acetonitrile Process – HMD
Simulation of HMD Process - RTG

3 RELIANCE INDUSTRIES LIMITED VADODARA MANUFACTURING UNIT
BASF NMP PROCESS RELIANCE INDUSTRIES LIMITED VADODARA MANUFACTURING UNIT

4 RIL VMD BD UNIT-OVERVIEW
PAST PRESENT PRODUCT 1,3-BUTADIENE CAPACITY 20,000 MTA 50,000 MTA LICENSOR UOP; USA BASF; GERMANY BASIC ENGINEERING ABB LUMMUS; USA DETAILED ENGINEERING EIL;NEW DELHI IDEA; CHENNAI YEAR OF COMMISSIONING 1979 1996

5 ADVANTAGES OF BASF NMP PROCESS
BASF Process commercialized since 1968 Total BASF capacity more than 2000 KMT High Yields Higher Butadiene Purity Ability to process wide variety of feed

6 ADVANTAGES OF BASF NMP PROCESS contd.
Non corrosive, Non Toxic solvent Safe plant operation–No acetylene accumulation Low Energy Consumption High turndown ratio

7 FLOW DIAGRAM

8 BASF NMP PROCESS PERFORMS SEPARATION
Extractive Distillation Butenes, Butanes & C4 Acetylenes have B.P. close to 1,3 Butadiene. Separation is not possible by conventional distillation. However solubility of these components in NMP is very different from 1,3 Butadiene. Therefore separation by extraction distillation. Conventional Distillation 1,2 Butadiene, Propyne & some C5 HC have high boiling point compared to 1,3 BD. Therefore separation by conventional distillation.

9 SEPARATION STEPS Extractive distillation-1
(Separation of C4 Raffinate) Extractive distillation-2 (Purification of Crude butadiene for separation of Ethyl Acetylene/ Vinyl Acetylene) Degassing (Solvent Recovery & Removal of VA Stream) Product Purification (For removal of traces of lighter & Heavier impurities)

10 Other C4s (Cis-2-Butenes)
PRODUCT QUALITY Sr. No. Product Purity 1 1:3 Butadiene 99.7% 2 Butadiene Dimers 200 wt ppm (Maximum) 3 Total Acetylenes 4 Other C4s (Cis-2-Butenes) 10

11 RELIABILITY ISSUES Popcorn formation & fouling in final column overhead condensers Fouling in degasser column Final Column PSV line rupture Prime reason is oxygen initiated polymerization Higher losses of solvent in acetylene washer wash water stream

12 MEASURES IMPLEMENTED Nitriting of system with hot nitrite circulation and monitoring of NO3 conversions. Oxygen level measurement from the vents of the receiver twice a week Continuous venting from the condenser dome cover end. Installation of one spare condenser and changing over at regular frequency of days in Final Column Installation of in line oxygen measurement from the vents (commissioned by Nov 07) TBC dosing across the shell (at 5 locations) and in the vapor line to the condenser for oxygen scavenging.

13 JSR ACETONITRILE PROCESS RELIANCE INDUSTRIES LIMITED
HAZIRA MANUFACTURING DIVISION

14 RIL HMD BD UNIT-OVERVIEW
PRODUCT : 1,3-BUTADIENE (99.5% pure) CAPACITY : 140 KTA LICENSOR : JSR, Japan BASIC ENGINEERING : JSR, Japan DETAILED ENGINEERING : Toyo Engineering India YEAR OF COMMISSIONING : 2005 PLANT INSTALLATION TIME : 16 MONTHS Winner of International Project Management Award

15 Design Considerations
Designed to process the Mix C4 from In house Cracker Plant & Imported Mix-C4 Case : High severity operation - 1,3BD (54%) Case : Low severity operation - 1,3BD (44%) BD recovery : Case1- 98% / Case % Solvent used : Acetonitrile Selectivity :VA>EA>1,2BD>MA>C5+> 1,3BD>cis-Butene>n- Butene> t- Butene>C3

16 Critical to Safety Operation
Build up of MA > 50 wt% explosive decomposition, alarm, TALO trip to purge the stream to flare Build up EA + VA > 45 wt% explosive decomposition, alarm, low diluents flow trip Build up of 1,2 BD > 50 wt% decomposition takes place.Temp cascade control with bottoms with drawl and hard wired alarm provided.

17 Process Flow Diagram Butanes + Butenes Solvent Water C4 Feed EDC No.1U
Butadiene Product Solvent Water Butanes + Butenes Solvent + water 1,2BD + C5+ & 1,3BD (traces) Water + HCs Lean Solvent B & B Diluents C4s Acetylenes + B & B Water + Solvent EDC No.1U EDC No.1L Stripper BB Washer EDC No.2 Side Cut Column Washer Tailing BD Washer Topping C4 Feed

18 C4 Hydrocarbon Balance C4 FEED EDC1 TOP SCC TOP TAIL BTM TOPP TOP
TOPP BTM BBW TOP SRC TOP Butane+Butene ___ 100% Trans-Butene CIS-Butene 0.2% 99.8% 1-3BD SMALL 98% 1-2BD 10% 90% MA EA+VA C5+ DIMER

19 BB Washer C - 5101 NO:1 EDC COLUMN (UPPER) C4 feed vapor ( Raffinate)
Diluents ANALYER – 51002 FOR 1-3 BD & OTHERS Liquid reflux E – 5103 ANALYZER 510001 FOR 1-3 BD, EA, VA, & MA 95 V – 5101 Butane & Butene Raffinate to OSBL SRC Solvent 84 SRC 30 1,3 BD & Heavies C-5111 C4 feed vapor 19 40Deg C 12.4 MT/hr Vapor from no.1 EDC lower 1 Solvent bleed 4.4Kg/cm2 BB Washer C TO No.1 EDC COLUMN (LOWER) TO SRC

20 C – 5102 NO:1 EDC COLUMN (LOWER) Vapor to No.1 EDC Upper
Liquid from C-5101 90 ANALYZER – 51005 FOR MA & 1-2 BD 1-3BD & Butane Butene Vapor to C-5103 ( EA,VA,MA,1-3 BD ) 7 Liquid from C-5103 ( EA,VA & Solvent ) 6 5 Solvent & EA,VA Vapor from C-5104 C – 5102 To Solvent stripper

21 C – 5103 NO:2 EDC COLUMN Vapor to C-5107 ( 1-3 BD , MA & Heavies) 110
Reflux (1-3 BD & Heavies) Solvent 90 1-3BD,MA & Heavies ANALYZER – 51004 FOR MA,VA & EA Solvent & EA-VA Vapor from C-5102 (1-3 BD, EA-VA,MA & Heavies ) C – 5103 To C

22 C – 5104 SOLVENT STRIPPER Vapor to C-5102 ( 1-3 BD , MA & Heavies)
From C-5102 (Solvent,EA,VA,1-3BD & 1-2 BD ) 55 From C-5105 (Solvent &1-3BD) Vapor to C-5105 ( Solvent,EA,VA,1-3BD & 1-2 BD ) 26 1-3 BD , MA & Heavies Solvent C – 5104 To solvent loop

23 SIDE CUT COLUMN SIDE CUT WASHER
DILUENT FROM V – 5101 Vapor (Solvent,EA-VA &1-3BD) E – 5110 E – 5111 E – 5112 C4 Acetylene TO C4 Hydro. Unit Reflux (Solvent & 1-3BD) 15 Brine 25 V – 5102 Water ANALYZER – 51003 FOR EA & VA Solvent & 1-3 BD Vapor-Liquid from C-5104 (1-3 BD, EA-VA & Solvent ) 1 SIDE CUT COLUMN SIDE CUT WASHER 1 TO C-5104 (1-3 BD & Solvent) C – 5105 C – 5106 TO SRC

24 C – 5110 PH Analyzer 25 21 01 LP-FLARE OWS
ACN 62.52%, H2O 28.84%,ETOH 8.64% PH Analyzer 94 Deg C BB-W TO E E – 5122 SCC-W CWS V – 5110 E – 5126 25 V – 5106 21 E – 5121 V – 5107 BB-W V-5105 TO C-5104 BOTTOM V-5104 2.84 MT/hr V-5101 01 E – 5123 114 Deg C E – 5124 SOL. From SCC-W LP-Steam CAUSTIC V-5117 V-5109 C – 5110

25 WATER CIRCULATION LOOP
CWR TO V – 5118 LP - FLARE 8 MT/hr 4 MT/hr E – 5126 CWS 30 25 TO E – 5112 V 13 MT/hr 25 SCN 19 BB-W C SSC-W C BD-W C V 25 E A/B 1 1 21 FROM V-5101 FROM E-5112 1 FROM V-5104 SRC C V-5101 Boot V-5104 Boot 1 V-5105 Boot 25 MT/hr

26 SOLVENT LOOP C - 5104 SDN TBC FROM C - 5110 DENSITY ANALYZER TO C-5109
C – 5102 Tray 3 C – 5102 Tray 1 E C – 5110 Boot 88.6 Deg C E – 5105 E – 5106 E – 5107 A/B E – 5123 97.3 Deg C 110 Deg C 126 Deg C 138 Deg C C – 5102 Tray 4 C – 5102 Tray 2 C – 5102 Bottom C – 5110 Boot E – 5101 A/B CWR C – 5107 Boot C – 5108 Boot C – 5107 Tray 26 FROM C E – 5102 A/B E – 5115 E – 5117 E – 5114 50 Deg C E – 5127 78 Deg C 73 Deg C 70 Deg C 58.7Deg C C 4 Feed CWS 2 MT/hr C – 5107 Boot C – 5108 Boot C – 5107 Tray 25 DENSITY ANALYZER TO C-5109 TO C TO C

27 Process & Quality Control
Butadiene Process Controls and Quality Control systems are well established. Strong on-line and off-line Quality control system is followed to ensure that customer gets the right material. Logistics systems are designed to ensure on-time and reliable supplies. Proper tracking methodologies are set. Fully equipped QC & QA set-up available. All the parameters are checked for conformance to specification and certification is done through COA. Labs are accredited to ISO:17025:2005 Well defined customer feedback/ complaint management procedures exists for improving QA systems.

28 SIMULATION OF ACETONITRILE PROCESS RELIANCE INDUSTRIES LIMITED
CEPD GROUP-RTG VMD

29 Simulation of BD Process
Butadiene Product Solvent Water Butanes + Butenes Tear4 1,2BD + C5+ & 1,3BD (traces) Water + HCs MA & other C4s Lean Solvent B & B Diluents C4s Acetylenes + B & B Water + Solvent EDC No.1U EDC No.1L Stripper BB Washer EDC No.2 Side Cut Column Washer Tailing BD Washer Topping C4 Feed Solvent recovery column Waste water Tear1 Tear2 Tear3

30 Thermodynamics Selection of VLE model is crucial for BD ED simulation
UNIFAC Activity coefficient model used for all columns UNIFAC-LBY Activity coefficient model used for Topping column simulation ASPEN Plus 10.2 version used for simulations To use latest ASPEN plus v7.0 pure component properties are to be updated by user NRTL, WILSON, UNIQUAC Activity coefficients are not supporting well

31 Comparison of Design and Simulation Temperatures
Top temp.,C Bottom temp.,C Design Pred. ED1U (C-5101) 44 41 71 72 ED1L (C-5102) 96 103 ED2 (C-5103) 45 57 59 Solvent stripper (C-5104) 110 138 135.5 Tailing column (C-5107) 40 60 53 Topping column (C-5108) 42 52 Topping column (feed tray) 50.6 Solvent purification column (C-5110) 92.4 92.5 113.7 114 RadFrac (rigorous distilaltion for two & three pahse fractionation) Aspen Plus module used for simulation

32 EDC-1 Upper Column Simulation Results
Design Pred. Stream ED1L/D ED1U/B MA/PD 11/34 24/65 1-Butene 9270 9278 Iso-butene 2861 2860 Trans-2-Butene 19500 5204 20700 5234 Cis-2-Butene 2600 2810 3232 3016 1,3-Butadiene 27479 24376 43769 40693 1,2-Butadiene 100 24 269 155 Ethylacetylene 50 35 135 112 Vinylacetylene 150 146 202 659 C5 heavier 145 270 159 Acetonitrile 11016 4265 175862 169212 Ethanol 1541 505 17481 16483 Water 255 1019 31982 32881 U/B L/D Reflux ratio is provided as input for simulation

33 EDC-1 Upper Column Simulation Results
Design Pred. Stream ED1U/DV ED1U/DL MA/PD 0/1 0/0 0/10 Iso-butane 4.9 0.4 71.4 70.2 n-Butane 26.4 25.0 385 386.7 1-Butene 227.8 229 3329 3289 Iso-Butene 452.6 466.4 6614 6589 Trans-2-butene 73.5 62.2 1073 1075 Cis-2-butene 52.8 43.5 771 807 1,3-Butadiene 1.7 25 C5 heavier 1.86 84 Acetonitrile 2.9 70 Water 3.9 83 Solvent D/V C4 Feed D/L Columns converged without any errors

34 EDC-1 Lower Column Simulation Results
Design Pred. Stream SC/V B/L MA/PD 0/88 10.9/57.3 0/55 12/77 1-Butene 7.6 Trans-2-butene 45 Cis-2-butene 438 360 660 12 1,3-Butadiene 42092 42525 50930 28871 1,2-Butadiene 395 24 1210 192 Ethyl acetylene 88 54 275 336 Vinyl acetylene 155 1430 972 C5 heavier 306 62 440 2.5 Acetonitrile 4310 4170 186289 195457 Ethanol 375 537 18141 19763 Water 615 1087 36409 38834 SC/V B/L 1-3 BD flow in bottom six trays is found to be very sensitive to temperature 2C difference in temperature results in major difference in BD flow.

35 Solvent Stripper Simulation Results
C-5104 Design Pred. Stream D/V B/L MA/PD 0/0 7/65 Cis-2-butene 542 12 1,3-Butadiene 52022 28894 1,2-Butadiene 488 55 122 Ethyl acetylene 163 217 Vinyl acetylene 596 430 19 C5 heavier 379 2.5 Acetonitrile 5023 13440 183596 181992 Ethanol 468 2129 17707 17603 Water 1164 3691 35345 35146 D/V B/L

36 Solvent Stripper Simulation Results
C-5104 Design Pred. Stream SC/V Return/L 1,3-Butadiene 269 38 61 1,2-Butadiene 13 56 41 Ethyl acetylene 92 134 16 Vinyl acetylene 615 624 103 Acetonitrile 14981 12925 14917 12900 Ethanol 2229 2456 2180 2425 Water 1966 3897 3900 To C-5106 SC/V R/L 1,2-Buatdiene stripping observed to be difficult

37 EDC2 Column Simulation Results
Design Pred. Stream D/V B/L MA/PD 0/111 6/42 0/0 5/28 Trans-2-butene 32 635 Cis-2-butene 444 1056 273 163 1,3-Butadiene 54409 56162 26107 26263 1,2-Butadiene 277 39.6 137 27 Ethyl acetylene 109 54 Vinyl acetylene 545 155 C5 heavier 68 41 Acetonitrile 21052 21211 Ethanol 1 2025 2188 Water 299 365 3915 4087 D/V B/L C5 heavier is considered as n-pentane in simulations

38 Tailing Column Simulation Results
Design Pred. Stream SC/L D/L B/L MA/PD 0/78 1.5/12.6 0/30.5 5/29.5 0/0 1-Butene 3 1.7 Trans-2-butene 25 3.9 Cis-2-butene 312 889 32 25.5 210 2.55 1,3-Butadiene 38820 39898 15969 16075 45 141 1,2-Butadiene 195 28 118 188 Ethyl acetylene 10.8 C5 heavier 277 40.5 116 27.66 D/L SC/L B/L

39 Topping Column Simulation Results
Design Pred. Boot Water Distillate 1,3 BD MA 30.5 30.33 0.172 cis-2-Butene 32 1,3-BD 45.8 45.6 15968 15922 13 12.61 0.38 Total, kg/hr 76.3 16000 D Excellent matching between simulation & design values Thermodynamics: UNIFAC-LBY From BD washer top

40 Solvent Recovery Column Simulation Results
Design Pred. Distillate Bottom Acetonitrile 1772 Ethanol 245 Water 815 817.8 25013 25012 Total, kg/hr 2832 2834.9 D Simulation results and design results matched very well Opportunity for reflux ratio optimization observed B

41 Observations ASPEN Plus RadFrac module is used for simulation of all the columns Used default value for efficiency Considered four tear streams from EDCU, EDCL, EDC2 & solvent stripper EDC1U, tailing, topping & solvent recovery columns design reflux is provided as input In solvent recovery column opportunity for reflux ratio optimization noticed EDC1L Bottom 6 trays flow is found to be very sensitive to change in temperatures. 2ºC difference in temperature resulted in major difference in 1,3 BD flow

42 Conclusion UNIFAC Thermodynamic activity coefficient model seems to simulate the process reasonably well The simulations are to be done for the actual plant conditions to conclude the effectiveness of the UNIFAC model for the system & optimization

43 GROWTH IS LIFE THANK YOU


Download ppt "Dr.G.Padmavati,Vimal Shah,Nitin Pal"

Similar presentations


Ads by Google