Presentation is loading. Please wait.

Presentation is loading. Please wait.

Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Estimates of solar emergy equivalents of tidal energy and deep earth heat and.

Similar presentations


Presentation on theme: "Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Estimates of solar emergy equivalents of tidal energy and deep earth heat and."— Presentation transcript:

1 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Estimates of solar emergy equivalents of tidal energy and deep earth heat and calculations of primary geobiosphere products of rain, river geopotential, atmospheric circulation, oceanic heating, winds and storms, ocean currents, and earth cycles.

2 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… CONCEPT: Calculation of the transformities of earth’s deep heat and tidal momentum using simultaneous equations and setting two inputs making the same product as equivalent… PRINCIPLE: Emergy equations set the empower of inputs into an energy transformation process equal to the empower of an output, where each term contains a flow multiplied by its emergy/unit. (Energy A * Tr A ) + (Energy B * Tr B ) = (Energy C * Tr C )

3 Emergy and Complex Systems Day 1 ~ Lecture 4  The solar emergy equivalents of tidal energy and deep earth heat are estimated by setting two inputs making the same product as equivalent. Emergy of Global Processes…  Three main emergy inputs to the geobiosphere are the solar energy, the tidal energy, and the deep earth heat. An emergy equation was written for the joint contributions of these inputs to crustal heat and another for the joint contributions to the geopotential energy of ocean water. With the transformity of solar equal one, by definition, the two equations are used to evaluate transformities of global tidal energy and global deep heat contribution.

4 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Heat in the Crust Pictured below are the main processes contributing E20 J/yr heat to the earth's crust as given by Sclater et al. (1980). By subtracting the estimate for radioactivity generation (1.98 E20 J/yr) and heat flux up from the mantle (4.74 E20 J/yr), the remaining annual flow of 6.49 E20 joules per year can be attributed to the tidal and solar sources from above These sources ( sun and tide) drive the atmosphere, ocean, hydrological, and sedimentary cycles and contribute heat downward by burying oxidized and reduced substances together, by friction, and by compressing sedimentary deposits Emergy of Global Processes…

5 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Solar emergy + Tidal emergy = Emergy of the heat generated by the surface processes (39,300 E20 J/yr)(1 sej/J) + (0.52 E20 J/yr)*T rt = (6.49 E20) *T rh (1) Emergy of Heat in the Crust

6 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… In this figure, the emergy budget equation for oceanic geopotential energy includes solar emergy, tidal emergy, and the contribution of the earth to the global process. The earth contributes 6.72 E20 J/yr (4.74 E20 J/yr deep heat and 1.98 E20 J/yr radioactive heat). Emergy of Tidal Energy Inflow and Use… Tidal energy is contributed to the geobiosphere by the gravitational forces of moon and sun that pull air, earth, and especially the ocean, relative to the rotating planet, causing friction and heat dissipation.

7 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Emergy of Tidal Energy Inflow and Use… Solar emergy + Tidal emergy + Deep Earth emergy = Oceanic geop. emergy (39,300 E20)*1.0 + (0.52 E20)*T rt + (6.72 E20)*T rh = (2.14 E20)*T rt (2)

8 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Combining Equations To obtain the unit emergy values (solar transformities), equation (1) was subtracted from equation (2) to obtain: (6.72 E20)*T rh = (2.14 E20) *T rt - (6.49 E20) T rh From this the solar transformity for tide was found to be T rt = 6.17 T rh which was substituted in equation 1 to obtain the solar transformity of crustal heat: Trh = 11,981 sej/J and the solar transformity of tide: Trt = 6.17*11,945 = 73,923 sej/J (39,300 E20)(1.0) + (0.52 E20)*Trt - (6.49 E20) *Trh =0 -(39,300 E20)(1.0) - (0.52 E20)*Trt - (6.72 E20)*Trh + (2.14 E20)*Trt = E20*Trh E20 Trh E20 *Trt = 0 Trt = 6.17*Trh (39,300 E20)(1.0) + (0.52 E20)*Trt - (6.49 E20) *Trh =0 -(39,300 E20)(1.0) - (0.52 E20)*Trt - (6.72 E20)*Trh + (2.14 E20)*Trt = E20*Trh E20 Trh E20 *Trt = 0 Trt = 6.17*Trh

9 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Table 1. Emergy of Inputs to the Geobiosphere _____________________________________________________ Note InflowSolar Transformity Empower sej/J sej/yr _____________________________________________________ 1Solar energy absorbed Crustal heat sources1.20 x Tidal energy absorbed7.37 x Total Global Empower ______________________________________________________ Table 1. Emergy of Inputs to the Geobiosphere _____________________________________________________ Note InflowSolar Transformity Empower sej/J sej/yr _____________________________________________________ 1Solar energy absorbed Crustal heat sources1.20 x Tidal energy absorbed7.37 x Total Global Empower ______________________________________________________ Transformities of renewable inputs to the geobiosphere are summarized below…

10 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy Flow (Empower) Supporting The Geobiosphere… E24 sej/yr.

11 Emergy and Complex Systems Day 1 ~ Lecture 4 Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999) ________________________________________________________________________ NoteInputs & UnitsInflowEmergy/Unit*Empower (J/yr)(sej/unit)E24 sej/yr ________________________________________________________________________ 1Renewable inputs Nonrenwable energies released by society: 2Oil, J1.38 E E Natural gas (oil eq.), J7.89 E E46.4 4Coal (oil eq.), J1.09 E E47.3 5Nuclear power, J8.60 E E52.9 6Wood, J5.86 E E41.1 7Soils, J1.38 E E51.7 8Phosphate, J4.77 E E70.6 9Limestone, J7.33 E E Metal ores, g9.93 E E91.7 Total non-renewable empower34.3 Total global empower50.1 _________________________________________________________________ Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999) ________________________________________________________________________ NoteInputs & UnitsInflowEmergy/Unit*Empower (J/yr)(sej/unit)E24 sej/yr ________________________________________________________________________ 1Renewable inputs Nonrenwable energies released by society: 2Oil, J1.38 E E Natural gas (oil eq.), J7.89 E E46.4 4Coal (oil eq.), J1.09 E E47.3 5Nuclear power, J8.60 E E52.9 6Wood, J5.86 E E41.1 7Soils, J1.38 E E51.7 8Phosphate, J4.77 E E70.6 9Limestone, J7.33 E E Metal ores, g9.93 E E91.7 Total non-renewable empower34.3 Total global empower50.1 _________________________________________________________________ Empower Supporting the Geobiosphere….

12 Emergy and Complex Systems Day 1 ~ Lecture 4 Table 2. Emergy of Products of the Global Energy System (after Odum et. al 2000) ________________________________________________________________ NoteProduct and UnitsEmergy*Production Emergy/Unit E24 sej/yr units/yrsej/unit ________________________________________________________________1 Global latent heat, J E sej/J 2 Global wind circulation, J E E3 sej/J 3 Global precipitation on land, g E E5 sej/g 4 Global precipitation on land, J E E4 sej/J 5 Average river flow, g E E5 sej/g 6 Average river geopotential, J E E4 sej/J 7 Average river chem. energy, J E E4 sej/J 8 Average waves at the shore, J E E4 sej/J 9 Average ocean current, J E E7 sej/J ________________________________________________________________ Table 2. Emergy of Products of the Global Energy System (after Odum et. al 2000) ________________________________________________________________ NoteProduct and UnitsEmergy*Production Emergy/Unit E24 sej/yr units/yrsej/unit ________________________________________________________________1 Global latent heat, J E sej/J 2 Global wind circulation, J E E3 sej/J 3 Global precipitation on land, g E E5 sej/g 4 Global precipitation on land, J E E4 sej/J 5 Average river flow, g E E5 sej/g 6 Average river geopotential, J E E4 sej/J 7 Average river chem. energy, J E E4 sej/J 8 Average waves at the shore, J E E4 sej/J 9 Average ocean current, J E E7 sej/J ________________________________________________________________ Global Emergy Intensities…

13 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Products of the Global Energy System Emergy of Global Processes… In the following table, emergy values for some main flows of the earth are calculated by dividing the total solar emergy input (15.83 E24 sej/yr) by each product's ordinary measure (number of joules, grams, dollars, individuals, bits, etc.). Emergy of Products of the Global Energy System __________________________________________________________ __ Product and UnitsEmergy*ProductionEmergy/Unit E24 sej/yrunits/yrsej/unit __________________________________________________________ __ Global latent heat, J E sej/J Global wind circulation, J E E3 sej/J Global precipitation on land, g E E5 sej/g Global precipitation on land, J E203.1 E4 sej/J Average river flow, g E194.0 E5 sej/g Average river geopotential, J E204.7 E4 sej/J Average river chem. energy, J E208.1 E4 sej/J Average waves at the shore, J E205.1 E4 sej/J Average ocean current, J E E7 sej/J __________________________________________________________ __ Emergy of Products of the Global Energy System __________________________________________________________ __ Product and UnitsEmergy*ProductionEmergy/Unit E24 sej/yrunits/yrsej/unit __________________________________________________________ __ Global latent heat, J E sej/J Global wind circulation, J E E3 sej/J Global precipitation on land, g E E5 sej/g Global precipitation on land, J E203.1 E4 sej/J Average river flow, g E194.0 E5 sej/g Average river geopotential, J E204.7 E4 sej/J Average river chem. energy, J E208.1 E4 sej/J Average waves at the shore, J E205.1 E4 sej/J Average ocean current, J E E7 sej/J __________________________________________________________ __

14 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Atmospheric Circulation Emergy of Global Processes… Many small circulation cells of the atmosphere converge and transform their energy into larger scale storms. These converge, concentrate, and transform into even larger circulation units that last longer and impact more. And so on… Energetics of Atmospheric Circulation Units _____________________________________________________________ Circulation UnitKinetic Energy FlowTransformity J/yrsej/J _____________________________________________________________ Over ocean circulation Latent heat into air9.3 E2312 Kinetic energy used2.33 E21192 Cumulus land circulation9.45 E21485 Mesosystems1.73 E22912 Temperate cyclones4.9 E Hurricanes6.1 E Hemisphere general circulation Surface winds1.61 E22983 Average circulation6.4 E Tropical jets3.7 E Polar jet1.61 E ______________________________________________________________ Energetics of Atmospheric Circulation Units _____________________________________________________________ Circulation UnitKinetic Energy FlowTransformity J/yrsej/J _____________________________________________________________ Over ocean circulation Latent heat into air9.3 E2312 Kinetic energy used2.33 E21192 Cumulus land circulation9.45 E21485 Mesosystems1.73 E22912 Temperate cyclones4.9 E Hurricanes6.1 E Hemisphere general circulation Surface winds1.61 E22983 Average circulation6.4 E Tropical jets3.7 E Polar jet1.61 E ______________________________________________________________

15 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Emergy of Rain with Altitude Precipitation varies with altitude, is affected by mountains, and depends on the weather systems in complex ways. To estimate global emergy per unit rainfall with altitude, the percent of global rainfall at each altitude was assumed to be proportional to the percent of surface latent heat flux reaching that altitude Evaluation of Continental Rainfall with Altitude __________________________________________________________________ ___ NoteLevelEmergyRain#Emergy/MassTransformity mE24 sej/yrE20g/yrE4 sej/g E4 sej/J __________________________________________________________________ ___ 1Surface __________________________________________________________________ ___ Evaluation of Continental Rainfall with Altitude __________________________________________________________________ ___ NoteLevelEmergyRain#Emergy/MassTransformity mE24 sej/yrE20g/yrE4 sej/g E4 sej/J __________________________________________________________________ ___ 1Surface __________________________________________________________________ ___

16 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Emergy of Ocean Circulation The circulation of the oceans is a major part of the geobiosphere. Like the atmosphere, it forms a hierarchy of circulation units. Most of the energy is in the small scale circulation at the ocean surface. Less energy and higher transformities are in the mesoscale gyrals (medium scale eddies in coastal waters and eddies from jets). The large scale general circulation of the oceans have highest transformities, with less energy overall, especially as emergy is converged in jets like the gulf stream. Energetics of Ocean Circulation _________________________________________________ _ Circulation UnitAnnual EnergyTransformity J/yrsej/unit _________________________________________________ __ Surface eddies, J3.0 x x 10 4 sej/J Mesoscale gyrals, J1.78 x x 10 4 sej/J Sea Ice, g3 x x 10 5 sej/g Sea ice, J9.0 x x 10 5 sej/J Ocean circulation, J8.5 x x 10 7 sej/J Jet currents, J1.67 x x 10 7 sej/J _________________________________________________ __ Energetics of Ocean Circulation _________________________________________________ _ Circulation UnitAnnual EnergyTransformity J/yrsej/unit _________________________________________________ __ Surface eddies, J3.0 x x 10 4 sej/J Mesoscale gyrals, J1.78 x x 10 4 sej/J Sea Ice, g3 x x 10 5 sej/g Sea ice, J9.0 x x 10 5 sej/J Ocean circulation, J8.5 x x 10 7 sej/J Jet currents, J1.67 x x 10 7 sej/J _________________________________________________ __

17 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Emergy of Main Features of the Land After several billion years of development, the land of the geobiosphere has been self organized into a hierarchy of components and cycles on many scales. Circulation of the land is driven by the atmosphere, ocean, hydrological cycle, and deep convection of the hot mantle below. Emergy of Continental Parts of the Global Energy System _____________________________________________________________ Componetnt and UnitsEmergy*ProductionEmergy/Unit E24 sej/yrUnits/yrsej/unit _____________________________________________________________ Earth heat flux, J E205.8 E4 sej/J Glaciers, mass, g E186.4 E6 sej/g crystal heat, J E E4 sej/J geopotential, J E197.5 E5 sej/J available heat, J E E6 sej/J Land area sustained, ha E E15 sej/ha Land, global cycle, g E E9 sej/g Continental sediment, g E E9 sej/g Volcanoes, g E153.8 E9 sej/g Mountains, g E E9 sej/g Cratons, g E E9 sej/g _____________________________________________________________ Emergy of Continental Parts of the Global Energy System _____________________________________________________________ Componetnt and UnitsEmergy*ProductionEmergy/Unit E24 sej/yrUnits/yrsej/unit _____________________________________________________________ Earth heat flux, J E205.8 E4 sej/J Glaciers, mass, g E186.4 E6 sej/g crystal heat, J E E4 sej/J geopotential, J E197.5 E5 sej/J available heat, J E E6 sej/J Land area sustained, ha E E15 sej/ha Land, global cycle, g E E9 sej/g Continental sediment, g E E9 sej/g Volcanoes, g E153.8 E9 sej/g Mountains, g E E9 sej/g Cratons, g E E9 sej/g _____________________________________________________________

18 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Emergy and the Spatial Organization of the Land The spatial organization of earth processes results in large differences in rates of earth cycle, energy flux, and unit emergy between the high energy mountain centers and the broad low plains in between. The larger scale features have longer turnover times, mass storages, and unit emergy values.

19 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Emergy and the Spatial Organization of the Land Land area from the earth's hypsographic curve (area of land versus altitude) is multiplied by the erosion rate from the previous Figure to obtain the areal distribution of earth cycling. The mass flow at each level is related to the whole earth emergy to obtain the emergy per mass with altitude. These unit emergy values are appropriate for evaluating sediments generated in the earth cycle. Annual Emergy Contributions to Elevated Lands* __________________________________________________________ __ AltitudeAreaErosion RateMass UpflowEmergy/mass km10 12 m210 3 g/m2/yr10 15 g/yr10 9 sej/g __________________________________________________________ __ __________________________________________________________ __ Annual Emergy Contributions to Elevated Lands* __________________________________________________________ __ AltitudeAreaErosion RateMass UpflowEmergy/mass km10 12 m210 3 g/m2/yr10 15 g/yr10 9 sej/g __________________________________________________________ __ __________________________________________________________ __

20 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Emergy of Rocks The self organizational processes of the earth circulation generate many kinds of rock. Sediments become cemented, reefs are generated by eco-systems, sedimentary rocks are metamorphosed, etc. Emergy of Sediments and Rocks ____________________________________________________________ _ Component and UnitsEmergy*ProductionEmergy/Unit E24 sej/yrE15 g/yrE9 sej/g ____________________________________________________________ _ Global land cycle, g Continental sediment, g Pelagic-abyssal sediment, g E Shale E154.1 Sandstone E158.5 Limestone E159.5 Evaporites Oceanic basalt, g ____________________________________________________________ _ Emergy of Sediments and Rocks ____________________________________________________________ _ Component and UnitsEmergy*ProductionEmergy/Unit E24 sej/yrE15 g/yrE9 sej/g ____________________________________________________________ _ Global land cycle, g Continental sediment, g Pelagic-abyssal sediment, g E Shale E154.1 Sandstone E158.5 Limestone E159.5 Evaporites Oceanic basalt, g ____________________________________________________________ _

21 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy Intensities…

22 Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy Intensities…

23 Emergy and Complex Systems Day 1 ~ Lecture 4 ZZZZZZZZZZ Z Z Z The End…


Download ppt "Emergy and Complex Systems Day 1 ~ Lecture 4 Emergy of Global Processes… Estimates of solar emergy equivalents of tidal energy and deep earth heat and."

Similar presentations


Ads by Google