# Essential Emergy Systems Concepts Environmental Accounting Workshop Niamey, Niger (Nov, 2005) - Day 1 Estimates of solar emergy equivalents of tidal energy.

## Presentation on theme: "Essential Emergy Systems Concepts Environmental Accounting Workshop Niamey, Niger (Nov, 2005) - Day 1 Estimates of solar emergy equivalents of tidal energy."— Presentation transcript:

Essential Emergy Systems Concepts Environmental Accounting Workshop Niamey, Niger (Nov, 2005) - Day 1 Estimates of solar emergy equivalents of tidal energy and deep earth heat and calculations of primary geobiosphere products of rain, river geopotential, atmospheric circulation, oceanic heating, winds and storms, ocean currents, and earth cycles.

Outline Global Flows of Emergy –How the baseline transformity values were derived Convergence of Emergy into Various Forms –Global flows of Rainfall, Wind, Soil etc. Transformities of Things –Raw materials, Agricultural Goods etc.

A Caution… Complex Material –These ideas are complex, and presented here simply to demonstrate the rigor behind the computed values –Only the main points will be made in this presentation – we will leave time for more detailed questions

The solar emergy equivalents of tidal energy and deep earth heat are estimated by assuming two inputs making the same product as equivalent. An emergy equation was written for the joint contributions of these inputs to crustal heat and another for the joint contributions to the geopotential energy of ocean water. Emergy of Global Processes Three main emergy inputs to the geobiosphere are the solar energy, the tidal energy, and the deep earth heat. With the transformity of solar equal one, by definition, the two equations are used to evaluate transformities of global tidal energy and global deep heat contribution.

CONCEPT: Calculation of the transformities of earth’s deep heat and tidal momentum using simultaneous equations and setting two inputs making the same product as equivalent … PRINCIPLE: Emergy equations set the empower of inputs into an energy transformation process equal to the empower of an output, where each term contains a flow multiplied by its emergy/unit. (Energy A * Tr A ) + (Energy B * Tr B ) = (Energy C * Tr C ) Emergy of Global Processes

Emergy of Heat in the Crust Pictured below are the main processes contributing 13.21 E20 J/yr heat to the earth's crust as given by Sclater et al. (1980). By subtracting the estimate for radioactivity generation (1.98 E20 J/yr) and heat flux up from the mantle (4.74 E20 J/yr), the remaining annual flow of 6.49 E20 joules per year can be attributed to the tidal and solar sources from above These sources (sun and tide) drive the atmosphere, ocean, hydrological, and sedimentary cycles and contribute heat downward by burying oxidized and reduced substances together, by friction, and by compressing sedimentary deposits Emergy of Global Processes 4.74 1.98 6.49 13.21

Emergy of Heat in the Crust Emergy of Global Processes (39,300 E20 J/yr)(1 sej/J) + (0.52 E20 J/yr)*Tr t = (6.49 E20) *Tr h (Equation 1) Solar + Tidal = Emergy of heat generated emergy emergy by surface processes

In this figure, the emergy budget equation for oceanic geo- potential energy includes solar emergy, tidal emergy, and the contribution of the earth to the global process. The earth contributes with 6.72 E20 J/yr (4.74 E20 J/yr deep heat and 1.98 E20 J/yr radioactive heat). Emergy of Tidal Energy Inflow and Use… Emergy of Global Processes Tidal energy is contributed to the geo-biosphere by the gravitational forces of moon and sun that pull air, earth, and especially the ocean, relative to the rotating planet, causing friction and heat dissipation. 4.74 +1.98 6.72 0.52 +1.62 2.14

Emergy of Tidal Energy Inflow and Use… Solar + Tidal + Deep Earth = Oceanic geopotential emergy emergy Emergy of Global Processes (39,3 E20)*1.0 + (0.52 E20)*Tr t + (6.72 E20)*Tr h = (2.14 E20)*Tr t (Equation 2) 0.52 +1.62 2.14

Combining Equations (39,300 E20)(1.0) + (0.52 E20)*Trt - (6.49 E20) *Trh =0 -(39,300 E20)(1.0) - (0.52 E20)*Trt - (6.72 E20)*Trh + (2.14 E20)*Trt =0 -6.49 E20*Trh - 6.72 E20 Trh +2.14 E20 *Trt = 0 Trt = 6.17*Trh (39,300 E20)(1.0) + (0.52 E20)*Trt - (6.49 E20) *Trh =0 -(39,300 E20)(1.0) - (0.52 E20)*Trt - (6.72 E20)*Trh + (2.14 E20)*Trt =0 -6.49 E20*Trh - 6.72 E20 Trh +2.14 E20 *Trt = 0 Trt = 6.17*Trh Emergy of Global Processes To obtain the unit emergy values (solar transformities), equation (1) was subtracted from equation (2) to obtain: (6.72 E20)*T rh = (2.14 E20) *T rt - (6.49 E20) T rh and the solar transformity of tide: Trt = 6.17*11,945 = 73,923 sej/J From this, the a preliminary solar transformity for tide was found to be T rt = 6.17 T rh which was substituted in eq. 1 to obtain the solar transformity of crustal heat: Trh = 11,981 sej/J

Emergy of Global Processes Table 1. Emergy of Inputs to the Geobiosphere ____________________________________________________________ Note InflowSolar Transformity Empower sej/J 10 24 sej/yr ____________________________________________________________ 1Solar energy absorbed13.93 2Crustal heat sources1.20 x 10 4 8.06 3Tidal energy absorbed7.37 x 10 4 3.83 Total Global Empower-- 15.83 Table 1. Emergy of Inputs to the Geobiosphere ____________________________________________________________ Note InflowSolar Transformity Empower sej/J 10 24 sej/yr ____________________________________________________________ 1Solar energy absorbed13.93 2Crustal heat sources1.20 x 10 4 8.06 3Tidal energy absorbed7.37 x 10 4 3.83 Total Global Empower-- 15.83 Transformities of renewable inputs to the geobiosphere are summarized below…(phew!)

3.93 8.06 3.83 x E24 sej/yr. Empower Supporting the Geobiosphere 34.3

Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999) ____________________________________________________________________ NoteInputs & UnitsInflow Emergy/Unit*Empower (J/yr) (sej/unit)E24 sej/yr _________________________________________________________________________________________________________________________________________ 1Renewable inputs -- -- 15.8 Non renewable energies released by society: 2Oil, J1.38 E20 9.06 E412.5 3Natural gas (oil eq.), J7.89 E19 8.05 E46.4 4Coal (oil eq.), J1.09 E20 6.71 E47.3 5Nuclear power, J8.60 E18 3.35 E52.9 6Wood, J5.86 E19 1.84 E41.1 7Soils, J1.38 E19 1.24 E51.7 8Phosphate, J4.77 E16 1.29 E70.6 9Limestone, J7.33 E16 2.72 E60.2 10Metal ores, g9.93 E14 1.68 E91.7 __________________________________________________________________ Total non-renewable empower34.3 Total global empower50.1 Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999) ____________________________________________________________________ NoteInputs & UnitsInflow Emergy/Unit*Empower (J/yr) (sej/unit)E24 sej/yr _________________________________________________________________________________________________________________________________________ 1Renewable inputs -- -- 15.8 Non renewable energies released by society: 2Oil, J1.38 E20 9.06 E412.5 3Natural gas (oil eq.), J7.89 E19 8.05 E46.4 4Coal (oil eq.), J1.09 E20 6.71 E47.3 5Nuclear power, J8.60 E18 3.35 E52.9 6Wood, J5.86 E19 1.84 E41.1 7Soils, J1.38 E19 1.24 E51.7 8Phosphate, J4.77 E16 1.29 E70.6 9Limestone, J7.33 E16 2.72 E60.2 10Metal ores, g9.93 E14 1.68 E91.7 __________________________________________________________________ Total non-renewable empower34.3 Total global empower50.1 Empower Supporting the Geobiosphere

Table 2. Emergy of Products of the Global Energy System (Odum et. al 2000) ____________________________________________________________________ ___________________________________________________________________________________________ NoteProduct UnitsEmergy* ProductionEmergy/Unit E24 sej/yr units/yrsej/unit ______________________________________________________________________________________________________________________________________________________ 1 Global latent heat, J15.83 1.26 E2412.6 sej/J 2 Global wind circulation, J15.83 6.45 E212.5 E3 sej/J 3 Global precipitation on land, g15.83 1.09 E201.5 E5 sej/g 4 Global precipitation on land, J15.83 5.19 E203.1 E4 sej/J 5 Average river flow, g15.83 3.96 E194.0 E5 sej/g 6 Average river geopotential, J15.83 3.4 E204.7 E4 sej/J 7 Average river chem. energy, J15.83 1.96 E208.1 E4 sej/J 8 Average waves at the shore, J15.83 3.1 E205.1 E4 sej/J 9 Average ocean current, J15.83 8.6 E171.8 E7 sej/J Table 2. Emergy of Products of the Global Energy System (Odum et. al 2000) ____________________________________________________________________ ___________________________________________________________________________________________ NoteProduct UnitsEmergy* ProductionEmergy/Unit E24 sej/yr units/yrsej/unit ______________________________________________________________________________________________________________________________________________________ 1 Global latent heat, J15.83 1.26 E2412.6 sej/J 2 Global wind circulation, J15.83 6.45 E212.5 E3 sej/J 3 Global precipitation on land, g15.83 1.09 E201.5 E5 sej/g 4 Global precipitation on land, J15.83 5.19 E203.1 E4 sej/J 5 Average river flow, g15.83 3.96 E194.0 E5 sej/g 6 Average river geopotential, J15.83 3.4 E204.7 E4 sej/J 7 Average river chem. energy, J15.83 1.96 E208.1 E4 sej/J 8 Average waves at the shore, J15.83 3.1 E205.1 E4 sej/J 9 Average ocean current, J15.83 8.6 E171.8 E7 sej/J Global Emergy Intensities

Emergy of Products of the Global Energy System In the following table, emergy values for some main flows of the earth are calculated by dividing the total solar emergy input (15.83 E24 sej/yr) by each product's ordinary measure (number of joules, grams, dollars, individuals, etc.). Emergy of Products of the Global Energy System ____________________________________________________________________________________________________________________________________________________________ Product and UnitsEmergy* ProductionEmergy/Unit E24 sej/yr units/yrsej/unit ____________________________________________________________________________________________________________________________________________________________ Global latent heat, J15.83 1.26 E2412.6 sej/J Global wind circulation, J15.83 6.45 E212.45 E3 sej/J Global precipitation on land, g15.83 1.09 E201.45 E5 sej/g Global precipitation on land, J15.83 5.19 E203.1 E4 sej/J Average river flow, g15.83 3.96 E194.0 E5 sej/g Average river geopotential, J15.83 3.4 E204.7 E4 sej/J Average river chem. energy, J15.83 1.96 E208.1 E4 sej/J Average waves at the shore, J15.83 3.1 E205.1 E4 sej/J Average ocean current, J15.83 8.6 E171.84 E7 sej/J Emergy of Products of the Global Energy System ____________________________________________________________________________________________________________________________________________________________ Product and UnitsEmergy* ProductionEmergy/Unit E24 sej/yr units/yrsej/unit ____________________________________________________________________________________________________________________________________________________________ Global latent heat, J15.83 1.26 E2412.6 sej/J Global wind circulation, J15.83 6.45 E212.45 E3 sej/J Global precipitation on land, g15.83 1.09 E201.45 E5 sej/g Global precipitation on land, J15.83 5.19 E203.1 E4 sej/J Average river flow, g15.83 3.96 E194.0 E5 sej/g Average river geopotential, J15.83 3.4 E204.7 E4 sej/J Average river chem. energy, J15.83 1.96 E208.1 E4 sej/J Average waves at the shore, J15.83 3.1 E205.1 E4 sej/J Average ocean current, J15.83 8.6 E171.84 E7 sej/J Emergy of Global Processes

Emergy of Atmospheric Circulation Many small circulation cells of the atmosphere converge and transform their energy into larger scale storms. These converge, concentrate, and transform into even larger circulation units that last longer and impact more. And so on… Energetics of Atmospheric Circulation Units_____________________________________________________________ Circulation UnitKinetic Energy FlowTransformity J/yrsej/J_____________________________________________________________ Over ocean circulation Latent heat into air9.3 E23 12 Kinetic energy used2.33 E21 192 Cumulus land circulation9.45 E21 485 Meso-systems1.73 E22 912 Temperate cyclones4.9 E213230 Hurricanes6.1 E206487 Hemisphere general circulation Surface winds1.61 E22 983 Average circulation6.4 E212473 Tropical jets3.7 E214278 Polar jet1.61 E219832 Energetics of Atmospheric Circulation Units_____________________________________________________________ Circulation UnitKinetic Energy FlowTransformity J/yrsej/J_____________________________________________________________ Over ocean circulation Latent heat into air9.3 E23 12 Kinetic energy used2.33 E21 192 Cumulus land circulation9.45 E21 485 Meso-systems1.73 E22 912 Temperate cyclones4.9 E213230 Hurricanes6.1 E206487 Hemisphere general circulation Surface winds1.61 E22 983 Average circulation6.4 E212473 Tropical jets3.7 E214278 Polar jet1.61 E219832 Emergy of Global Processes

Emergy of Rain with Altitude Precipitation varies with altitude, is affected by mountains, and depends on the weather systems in complex ways. To estimate global emergy per unit rainfall with altitude, the percent of global rainfall at each altitude was assumed to be proportional to the percent of surface latent heat flux reaching that altitude Evaluation of Continental Rainfall with Altitude ______________________________________________________________ NoteLevel Emergy Rain# Emergy/MassTransformity m E24 sej/yr E20g/yr E4 sej/g E4 sej/J ______________________________________________________________ 1Surface15.83 1.09 14.52.9 299015.83 0.63 25.15.0 3195015.83 0.53 29.96.0 4301015.83 0.31 50.310.0 5420015.83 0.12 131.026.1 6557015.83 0.08 198.039.5 7718015.83 0.05 315.063.1 Evaluation of Continental Rainfall with Altitude ______________________________________________________________ NoteLevel Emergy Rain# Emergy/MassTransformity m E24 sej/yr E20g/yr E4 sej/g E4 sej/J ______________________________________________________________ 1Surface15.83 1.09 14.52.9 299015.83 0.63 25.15.0 3195015.83 0.53 29.96.0 4301015.83 0.31 50.310.0 5420015.83 0.12 131.026.1 6557015.83 0.08 198.039.5 7718015.83 0.05 315.063.1 Emergy of Global Processes

Emergy of Ocean Circulation The circulation of the oceans is a major part of the geobiosphere. Like the atmosphere, it forms a hierarchy of circulation units. Most of the energy is in small scale circulation at the ocean surface. Less energy and higher transformities are in mesoscale gyrals (medium scale eddies in coastal waters and eddies from jets). Large scale general ocean circulation has highest transformities, with less energy overall, especially as emergy is converged in jets like the gulf stream. Energetics of Ocean Circulation _____________________________________________________________________________________________________________________________________________________ Circulation UnitAnnual Energy Transformity J/yr sej/unit ____________________________________________________________________________________________________________________________________ Surface eddies, J3.0 x 10 20 5.3 x 10 4 sej/J Mesoscale gyrals, J1.78 x 10 19 8.9 x 10 4 sej/J Sea Ice, g3 x 10 19 5.3 x 10 5 sej/g Sea ice, J9.0 x 10 19 1.76 x 10 5 sej/J Ocean circulation, J8.5 x 10 17 1.87 x 10 7 sej/J Jet currents, J1.67 x 10 17 9.4 x 10 7 sej/J Energetics of Ocean Circulation _____________________________________________________________________________________________________________________________________________________ Circulation UnitAnnual Energy Transformity J/yr sej/unit ____________________________________________________________________________________________________________________________________ Surface eddies, J3.0 x 10 20 5.3 x 10 4 sej/J Mesoscale gyrals, J1.78 x 10 19 8.9 x 10 4 sej/J Sea Ice, g3 x 10 19 5.3 x 10 5 sej/g Sea ice, J9.0 x 10 19 1.76 x 10 5 sej/J Ocean circulation, J8.5 x 10 17 1.87 x 10 7 sej/J Jet currents, J1.67 x 10 17 9.4 x 10 7 sej/J Emergy of Global Processes

Emergy of Main Features of the Land After several billion years of development, the land of the geobiosphere has been self organized into a hierarchy of components and cycles on many scales. Circulation of the land is driven by the atmosphere, ocean, hydrological cycle, and deep convection of the hot mantle below. Emergy of Continental Parts of the Global Energy System __________________________________________________________________________________________________________________________________________ _______________________ ______________________________________ Component and UnitsEmergy* ProductionEmergy/Unit E24 sej/yr Units/yrsej/unit _________________________________________________________________________________________________________________________________________ Earth heat flux, J15.83 2.74 E205.8 E4 sej/J Glaciers, mass, g15.83 2.48 E186.4 E6 sej/g crystal heat, J15.83 8.3 E201.91 E4 sej/J geopotential, J15.83 2.11 E197.5 E5 sej/J available heat, J15.83 1.38 E191.14 E6 sej/J Land area sustained, ha15.83 1.5 E101.05 E15 sej/ha Land, global cycle, g15.83 9.36 E151.69 E9 sej/g Continental sediment, g15.83 7.4 E152.13 E9 sej/g Volcanoes, g15.83 3.05 E153.8 E9 sej/g Mountains, g15.83 2.46 E156.43 E9 sej/g Cratons, g15.83 0.81 E1519.5 E9 sej/g Emergy of Continental Parts of the Global Energy System __________________________________________________________________________________________________________________________________________ _______________________ ______________________________________ Component and UnitsEmergy* ProductionEmergy/Unit E24 sej/yr Units/yrsej/unit _________________________________________________________________________________________________________________________________________ Earth heat flux, J15.83 2.74 E205.8 E4 sej/J Glaciers, mass, g15.83 2.48 E186.4 E6 sej/g crystal heat, J15.83 8.3 E201.91 E4 sej/J geopotential, J15.83 2.11 E197.5 E5 sej/J available heat, J15.83 1.38 E191.14 E6 sej/J Land area sustained, ha15.83 1.5 E101.05 E15 sej/ha Land, global cycle, g15.83 9.36 E151.69 E9 sej/g Continental sediment, g15.83 7.4 E152.13 E9 sej/g Volcanoes, g15.83 3.05 E153.8 E9 sej/g Mountains, g15.83 2.46 E156.43 E9 sej/g Cratons, g15.83 0.81 E1519.5 E9 sej/g Emergy of Global Processes

Emergy and the Spatial Organization of the Land The spatial organization of earth processes results in large differences in rates of earth cycle, energy flux, and unit emergy between the high energy mountain centers and the broad low plains in between. The larger scale features have longer turnover times, mass storages, and unit emergy values.

Emergy and the Spatial Organization of the Land Land area from the earth's hypsographic curve (area of land versus altitude) is multiplied by the erosion rate from the previous Figure to obtain the areal distribution of earth cycling. The mass flow at each level is related to the whole earth emergy to obtain the emergy per mass with altitude. These unit emergy values are appropriate for evaluating sediments generated in the earth cycle. Annual Emergy Contributions to Elevated Lands* ___________________________________________________________________________________________________________________________________________________________ Altitude Area Erosion Rate Mass Upflow Emergy/mass km 10 12 m2 10 3 g/m2/yr 10 15 g/yr 10 9 sej/g ___________________________________________________________________________________________________________________________________________________________ 0 148.1 -- 9.36 1.7 1 42.3 0.15 6.34 2.5 2 19.7 0.29 5.71 2.8 3 8.5 0.44 3.74 4.2 4 2.7 0.60 1.62 9.8 5 0.5 0.76 0.38 41.6 Annual Emergy Contributions to Elevated Lands* ___________________________________________________________________________________________________________________________________________________________ Altitude Area Erosion Rate Mass Upflow Emergy/mass km 10 12 m2 10 3 g/m2/yr 10 15 g/yr 10 9 sej/g ___________________________________________________________________________________________________________________________________________________________ 0 148.1 -- 9.36 1.7 1 42.3 0.15 6.34 2.5 2 19.7 0.29 5.71 2.8 3 8.5 0.44 3.74 4.2 4 2.7 0.60 1.62 9.8 5 0.5 0.76 0.38 41.6 Emergy of Global Processes

Emergy of Rocks The self organizational processes of the earth circulation generate many kinds of rock. Sediments become cemented, reefs are generated by eco-systems, sedimentary rocks are metamorphosed, etc. Emergy of Sediments and Rocks ___________________________________________________________________________________________________________________________________________________________ Component and Units Emergy* ProductionEmergy/Unit E24 sej/yrE15 g/yrE9 sej/g ___________________________________________________________________________________________________________________________________________________________ ___ ____________________________________________________________________________________________ Global land cycle, g 15.839.361.69 Continental sediment, g 15.830.4-9.41.7-42 Pelagic-abyssal sediment, g 15.839.7 E151.63 Shale 15.833.9 E154.1 Sandstone 15.831.87 E158.5 Limestone 15.831.68 E159.5 Evaporites 15.830.094169.0 Oceanic basalt, g 15.8363.40.25 Emergy of Sediments and Rocks ___________________________________________________________________________________________________________________________________________________________ Component and Units Emergy* ProductionEmergy/Unit E24 sej/yrE15 g/yrE9 sej/g ___________________________________________________________________________________________________________________________________________________________ ___ ____________________________________________________________________________________________ Global land cycle, g 15.839.361.69 Continental sediment, g 15.830.4-9.41.7-42 Pelagic-abyssal sediment, g 15.839.7 E151.63 Shale 15.833.9 E154.1 Sandstone 15.831.87 E158.5 Limestone 15.831.68 E159.5 Evaporites 15.830.094169.0 Oceanic basalt, g 15.8363.40.25 Emergy of Global Processes

Emergy Intensities

Table 1. Annual Emergy Contributions to Global Processes* (after Odum et al. 2000) ___________________________________________________________________________________________________________________________________ Note InputUnitsInflow Emergy/Unit Empower units/yr sej/unit (E24 sej/yr) ___________________________________________________________________________________________________________________________________ 1 Solar insolation, J3.93 E24 1.03.93 2 Deep earth heat, J6.72 E20 1.20 E48.06 3 Tidal energy, J0.52 E20 7.39 E43.84 4 Total 15.83 Table 1. Annual Emergy Contributions to Global Processes* (after Odum et al. 2000) ___________________________________________________________________________________________________________________________________ Note InputUnitsInflow Emergy/Unit Empower units/yr sej/unit (E24 sej/yr) ___________________________________________________________________________________________________________________________________ 1 Solar insolation, J3.93 E24 1.03.93 2 Deep earth heat, J6.72 E20 1.20 E48.06 3 Tidal energy, J0.52 E20 7.39 E43.84 4 Total 15.83 Emergy Flow Supporting the Geo-Biosphere

Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999) ________________________________________________________________________ Note Inputs & UnitsInflow Emergy/Unit*Empower (J/yr) (sej/unit)E24 sej/yr ________________________________________________________________________ 1 Renewable inputs -- --15.8 Non-renewable energies released by society: 2 Oil, J1.38 E20 9.06 E412.5 3 Natural gas (oil eq.), J7.89 E19 8.05 E46.4 4 Coal (oil eq.), J1.09 E20 6.71 E47.3 5 Nuclear power, J8.60 E18 3.35 E52.9 6 Wood, J5.86 E19 1.84 E41.1 7 Soils, J1.38 E19 1.24 E51.78 8 Phosphate, J4.77 E16 1.29 E70.6 9 Limestone, J7.33 E16 2.72 E60.2 10 Metal ores, g9.93 E14 1.68 E91.7 Total non-renewable empower34.3 Total global empower50.1 Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999) ________________________________________________________________________ Note Inputs & UnitsInflow Emergy/Unit*Empower (J/yr) (sej/unit)E24 sej/yr ________________________________________________________________________ 1 Renewable inputs -- --15.8 Non-renewable energies released by society: 2 Oil, J1.38 E20 9.06 E412.5 3 Natural gas (oil eq.), J7.89 E19 8.05 E46.4 4 Coal (oil eq.), J1.09 E20 6.71 E47.3 5 Nuclear power, J8.60 E18 3.35 E52.9 6 Wood, J5.86 E19 1.84 E41.1 7 Soils, J1.38 E19 1.24 E51.78 8 Phosphate, J4.77 E16 1.29 E70.6 9 Limestone, J7.33 E16 2.72 E60.2 10 Metal ores, g9.93 E14 1.68 E91.7 Total non-renewable empower34.3 Total global empower50.1 Emergy Flow Supporting the Geo-Biosphere

Table 2. Emergy of Products of the Global Energy System (after Odum et. al 2000) _____________________________________________________________________ Note Product UnitsEmergy* ProductionEmergy/Unit E24 sej/yr units/yrsej/unit _____________________________________________________________________ 1 Global latent heat, J15.83 1.26 E2412.6 sej/J 2 Global wind circulation, J15.83 6.45 E212.5 E3 sej/J 3 Global precipitation on land, g15.83 1.09 E201.5 E5 sej/g 4 Global precipitation on land, J15.83 5.19 E203.1 E4 sej/J 5 Average river flow, g15.83 3.96 E194.0 E5 sej/g 6 Average river geopotential, J15.83 3.4 E204.7 E4 sej/J 7 Average river chem. energy, J15.83 1.96 E208.1 E4 sej/J 8 Average waves at the shore, J15.83 3.1 E205.1 E4 sej/J 9 Average ocean current, J15.83 8.6 E171.8 E7 sej/J Table 2. Emergy of Products of the Global Energy System (after Odum et. al 2000) _____________________________________________________________________ Note Product UnitsEmergy* ProductionEmergy/Unit E24 sej/yr units/yrsej/unit _____________________________________________________________________ 1 Global latent heat, J15.83 1.26 E2412.6 sej/J 2 Global wind circulation, J15.83 6.45 E212.5 E3 sej/J 3 Global precipitation on land, g15.83 1.09 E201.5 E5 sej/g 4 Global precipitation on land, J15.83 5.19 E203.1 E4 sej/J 5 Average river flow, g15.83 3.96 E194.0 E5 sej/g 6 Average river geopotential, J15.83 3.4 E204.7 E4 sej/J 7 Average river chem. energy, J15.83 1.96 E208.1 E4 sej/J 8 Average waves at the shore, J15.83 3.1 E205.1 E4 sej/J 9 Average ocean current, J15.83 8.6 E171.8 E7 sej/J Global Emergy Intensities

Regional Emergy Intensities

Agricultural Emergy Intensities

What Now? We’ve estimated Nature’s work in primary processes –Rainfall, Wind, Tides/Waves, Soils, Rocks, etc. Now we can compile these values to study secondary processes –Agriculture, Forestry, Fisheries, etc. Knowing Nature’s work and studying embodied work in secondary processes is used for policy analysis

Environmental Accounting of Sahelian Agroecosystems Identify systems –Agroforestry, Rotating rangeland, Conventional cropping Identify resource basis and yields –Climate, soil, purchased goods/services, yields, changes in internal stocks (e.g. SOM) Synthesize information into Env. Acct. tables –Use previously computed transformities –Assess sensitivity to transformities –Determine if local values are needed

Next… Practical applications –Emergy analysis of states and nations –Environmental Impact Assessment Soil Erosion Water Supply Recycling

Download ppt "Essential Emergy Systems Concepts Environmental Accounting Workshop Niamey, Niger (Nov, 2005) - Day 1 Estimates of solar emergy equivalents of tidal energy."

Similar presentations