Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 PROCEDURE DESIGN CRITERIA Presented by Eliane Belin DGAC - ENAC

Similar presentations


Presentation on theme: "1 PROCEDURE DESIGN CRITERIA Presented by Eliane Belin DGAC - ENAC"— Presentation transcript:

1 1 PROCEDURE DESIGN CRITERIA Presented by Eliane Belin DGAC - ENAC

2 2 TABLE OF CONTENTS l Positioning method l Accuracy l Waypoint tolerance l Nominal trajectory l Stabilization distance l Path terminator l Strategy l Protection area l Check list

3 3 INS / IRS GNSS VORDME DME RNAV SYSTEM A/C POSITION

4 DEFINITION OF RNAV VORDME Reference facility VOR/DME Nominal Track WAY-POINT D : Distance from reference facility to the waypoint D D1 D1 : Distance from reference facility to the tangent point D2 D2 : Distance from the tangent point to the waypoint

5 5 DME/DME POSITIONING d1 DME3 DME1 DME4 DME2

6 Area of simultaneous use of two DME stations 30° 60° D D Update area for DME stations located at distance “D” apart DME 1 DME 2 1NM

7 7 SV i : x i, y i, z i RiRiRiRi SV j : x j, y j, z j RjRjRjRj SV k : x k, y k, z k RkRkRkRk 2 points given by the intersection of the three LOPs GPS receiver location

8 8 TABLE OF CONTENTS ê Positioning method ê Accuracy l Waypoint tolerance l Nominal trajectory l Stabilization distance l Path terminator l Strategy l Protection area l Check list

9 9 DIFFERENT CRITERIA ICAO DOC 8168 RNAV VOR-DME RNAV DME-DME RNAV GNSS Guidance material DME DME / GNSS

10 10 Estimated Flight Path SYSTEM ACCURACY Nominal Flight Path HORIZONTAL VIEW Estimated Position FTT ATT XTT XTT depends on FTT Nominal Aircraft Position True Aircraft Flight Path True Aircraft Position

11 11 ATT XTT WAYPOINT TOLERANCE

12 Based on 2  (95%) confidence limits SYSTEM ACCURACY: VOR/DME AND DME-DME FTT : Flight Technical Tolerance Ei : Stations Tolerance ST : System computation

13 Nominal Track Reference facility VOR/DME D D1 D2 VORDME : ATT Calculation ADT : Along DME Tolerance ADT AVT : Along VOR Tolerance ST : System computationTolerance AVT

14 D2 Nominal Track VOR/DME Reference facility D D1 VT VT : VOR Tolerance DT DT : DME Tolerance FTT : Flight Technical Tolerance ST : Sytem computation Tolerance VORDME : XTT Calculation

15 DME-DME : ATT and XTT No reference to a DME/DME couple Distance for calculation = Radio Horizon D=1.23 x (ft) Distance for calculation = Radio Horizon D=1.23 x (ft) d = 0.25NM xD Altitude = previous segment minimum altitude Only 2 DMEs available: multiply by 1.29 !

16 16 SUMMING UP SUMMING UP System accuracy: VOR / DME ATT = XTT = ATT = XTT = System accuracy: DME / DME ATT = XTT = ATT = XTT =

17 17 VORDME- DMEDME: FTT and ST

18 XTT calculation VORDME - DME/DME PROTECTION AREA WIDTH Initial Intermediate 1/2 AW = MAX( 2NM, 1.5 XTT + BV) BV : 1NM Initial Intermediate 1/2 AW = MAX( 2NM, 1.5 XTT + BV) BV : 1NM Final, Mapt and TP 1/2 AW = MAX( 1NM, 1.5 XTT + BV) BV : 0.5NM Final, Mapt and TP 1/2 AW = MAX( 1NM, 1.5 XTT + BV) BV : 0.5NM

19 19 DESIGN OF PROTECTION AREAS PRIMARY AREA SECONDARY AREA IAWP IWP

20 20 GNSS TOLERANCE Space segment tolerance Receiver tolerance System computer tolerance : ST Flight technical tolerance :FTT

21 21 Number of satellites in view GGEOMETRY GGEOMETRY Satellite Outage DILUTION OF PRECISION PRECISION

22 22 INTEGRITYINTEGRITY Accuracy of the position Integrity Use of GNSS Position GNSS Position not to be used IMAL Value IMAL : Integrity monitoring alarm limit The value depends on the phase of flight

23 23 LFPO. PARIS ORLY Baro Aided Outages 24 May :36:34 until 24 May :41:34 UTC (00:05:00) DP: Non-Baro Aided Outages 24 May :36:34 until 24 May :44:34 UTC (00:08:00) DP: RAIMPredictionWithAUGUR

24 24 approach airport A airport B descent holding climbing initial taxiing taking off landing GNSS MODE 30 Nm ROUTETerminal Approach en route IMAL is coupled with GNSS mode

25 GNSS : XTT - ATT 24

26 26 KEY POINT 1 SensorATT and XTT Protection area Width PLAN FOR ALL SENSORS

27 27 TABLE OF CONTENTS ê Positioning method ê Accuracy l Waypoint tolerance ê Nominal trajectory ê stabilization distance ê Path terminator l Strategy l Protection area l Check list

28 28  On board data base Aerodrome data  Airspace limits  Available navaids  Flight paths to follow (charts) ALL RNAV TRAJECTORIES ARE CODED INTO THE DATA BASE

29 29 Planned flight Path Start of descent Interception Next WP

30 30 GPS PRIMARY CLB FLT CRZ OPT REC MAX FL350 FL370 FL390

31 31 CODING PATH CONSTRAINTS CODINGCODING How to navigate PATH TERMINATOR How to navigate PATH TERMINATOR CF : Course to fix DF : Direct to fix

32 32 Path Terminator concept  Transforms procedures into coded flight paths  Set of two letters  PT instructs to navigate from a starting point  to a specific point  or terminating condition

33 33 TF : Track between Fixes

34 34 DF : Direct to Fix

35 35 CF : Course to Fix 135°

36 36 ARINC 424 PATH TERMINATOR

37 37 DF PATH TERMINATOR TF CF DF CF TF CF DF TF CF TF DF TF : Track between fixes CF : course to fix DF : Direct to fix

38 38 KEY POINT 2 Type of waypoint PATH Terminator Be aware of coding influence Real need of COMMUNICATION with coding suppliers Nominal trajectory Protection area Nominal trajectory Protection area

39 39 TYPE OF WAYPOINTS IAWP IWP FAWP MAWP MAHWP HWP AWP DWP

40 40 TURN INITIATION DISTANCE 2 R R L1 = R.tan ( L2 = / 2 ) 5. TAS / 3600 L=L1+L2 L1 L2 L

41 41 TAS Turn angle FLY-BY BANK : 25°

42 42 TURN STABILIZATION DISTANCE 60° 30° R1 30° R2 L1= r1.sin L2= r1.cos.tg30° L3 = r1 (1/sin30° - 2cos/ sin60° ) L4 = r2. tan15° L5 = 10. TAS / 3600 L = L1 + L2 + L3 + L4 + L5 L1L2L4L3L5 L

43 43 TAS Turn angle FLY-OVER BANK : 15°

44 44 WP1 : FLY-OVER WP2 : FLY-BY

45 45 WP1 : FLY-BY WP2 : FLY-BY

46 46 WP1 : FLY-OVER WP2 : FLY- OVER

47 47 TABLE OF CONTENTS ê Positioning method ê Accuracy l Waypoint tolerance ê Nominal trajectory ê stabilization distance ê Path terminator ê Strategy l Protection area l Check list

48 48 STRATEGYSTRATEGY  Séparation SID/ STAR  Attente / IAF décalé des axes de pistes  Concept Y ou T  Mise en place de WP supplémentaires pour correspondre au séquencement  Prise en compte des zone urbanisée  Utilisation de la descente continue (CDA) FLOATING WP abatement PROCEDURE

49 49 Holding shift from RWY axis WPs floating Segregation traffic Distance for sequencing

50 50 STOCHOLM ARLANDA

51 51 NON RNAV

52 52 RNAV

53 53 Project CDA-evaluation with KLM FMS data Aircraft: B Procedure: 2000 ft approach Runway: 06 Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR

54 54 CONTINUOUS DESCENT APPROACH Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR

55 55 Footprint B , Conventional 2000 ft approach Y (km) X (km) 55.0 dB(A); km² 65.0 dB(A); km² 75.0 dB(A); km² Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR

56 56 Footprint B , Conventional 3000 ft approach Y (km) X (km) 55.0 dB(A); km² 65.0 dB(A); km² 75.0 dB(A); km² Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR

57 57 Footprint B , Continuous Descent Approach Y (km) X (km) 55.0 dB(A); km² 65.0 dB(A); km² 75.0 dB(A); km² Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR

58 58 Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR

59 59 KEY POINT 3 Safety issues Minimum distance Coding requirements Minimum distance Coding requirements Operational issues Pilots needs ATC needs Environmental aspect Pilots needs ATC needs Environmental aspect

60 60 TABLE OF CONTENTS ê Positioning method ê Accuracy l Waypoint tolerance ê Nominal trajectory ê stabilization distance ê Path terminator ê Strategy ê Protection area l Check list

61 61 PROTECTION AREA  Use of wind spiral for all turn protections  Max turn angle :120° (no reversal)  No bank angle delay for a fly-by WP  Protection deal with max TAS and low TAS WHAT’S NEW ? 3Bank angle : 25° / 15° 3Pilot reaction delay : 6 sec / 3 Sec 3Descend and climb gradient 3MOC WHAT’ S REMAINING ?

62 62 ATT c 30° TURN AT FLY-OVER WP

63 63 ATT R.TAN(A/2) R’R ’’ c S’ S’’ 30° A/2 FLY-BY WP turn angle  90° A R

64 FLY-BY turn angle > 90 ° r r.tan(A/2) R’ R’’ c S’ S’’ ATT

65 TF : PROTECTION AREA 65

66 66 C C= Pilot reaction + bank angle delay DF : PROTECTION AREA A/2

67 67 MISSED APPROACH SEGMENT  Some RNAV systems are disconnected in case of missed approach  Plan a dead reckoning track Protection area splays at 15° from earliest MAWP Complete MOC within the secondary area (for class A GNSS )

68 68 MISSED APPROACH Area Width at MAWP 15 °Splay from earliest MAWP + Area Width at MATWP COMPARE > :Solution1Solution1< :Solution2

69 69 Check list Strategy A/C Equipment Nominal trajectory Minimum distances Path terminator XTT- ATT Area width Protection area Turning area Earliest [R” - R’] Latest [S” - S’] Wind spiral Low speed accomodation Connecting point / WP Minimal altitude MOCSlope Flight simulation Data in WGS84

70 70 My personal point of view Users should gain benefits from RNAV Mature design criteria are available Safety relies on communication and training On line help : will exist Ecacnav.com RNP concept instead of sensor concept

71 71 Any questions?

72 72 Uncertainty Area GOOD GEOMETRIEBAD GEOMETRY DILUTION OF PRECISION

73 73 WAYPOINTWAYPOINT  Expressed in WGS84 coordinates  IAWP, IWP, FAWP, MAWP, MAHWP  Fly-by waypoint Symbol :  Fly-over waypoint Symbol :

74 74 WP1 : FLY-OVER WP2 : FLY-BY Stabilisation distances are necessary

75 75

76 76 MISSED APPROACH SOCSOC 15° MAWPTWP

77 77 MISSED APPROACH 15° SOCSOC MAWPTWP

78 78 MISSED APPROACH 15° SOCSOC MAWP TWP

79 79


Download ppt "1 PROCEDURE DESIGN CRITERIA Presented by Eliane Belin DGAC - ENAC"

Similar presentations


Ads by Google