Download presentation

Presentation is loading. Please wait.

Published byMartha Bertrand Modified over 2 years ago

1
**Dr. Claude S. Moore Danville Community College**

PRECALCULUS I Quadratic Functions Dr. Claude S. Moore Danville Community College

2
Polynomial Function A polynomial function of degree n is where the a’s are real numbers and the n’s are nonnegative integers and an 0.

3
**a, b, and c are real numbers and a 0.**

Quadratic Function A polynomial function of degree 2 is called a quadratic function. It is of the form a, b, and c are real numbers and a 0.

4
**Axis of Symmetry For a quadratic function of the form**

gives the axis of symmetry.

5
**axis of symmetry: x = h vertex: (h, k)**

Standard Form A quadratic function of the form is in standard form. axis of symmetry: x = h vertex: (h, k)

6
**Characteristics of Parabola**

vertex: maximum vertex: minimum a < 0

7
**PRECALCULUS I Higher Degree Polynomial Functions**

Dr. Claude S. Moore Danville Community College

8
**Characteristics The graph of a polynomial function… 1. Is continuous.**

2. Has smooth, rounded turns. 3. For n even, both sides go same way. 4. For n odd, sides go opposite way. 5. For a > 0, right side goes up. 6. For a < 0, right side goes down.

9
**Leading Coefficient Test: n odd**

graphs of a polynomial function for n odd: . an > 0 an < 0

10
**Leading Coefficient Test: n even**

graphs of a polynomial function for n even: . an > 0 an < 0

11
**Roots, Zeros, Solutions 1. x = a is root or zero of f.**

The following statements are equivalent for real number a and polynomial function f : 1. x = a is root or zero of f. 2. x = a is solution of f (x) = 0. 3. (x - a) is factor of f (x). 4. (a, 0) is x-intercept of graph of f (x).

12
**Repeated Roots (Zeros)**

1. If a polynomial function contains a factor (x - a)k, then x = a is a repeated root of multiplicity k. 2. If k is even, the graph touches (not crosses) the x-axis at x = a. 3. If k is odd, the graph crosses the x-axis at x = a.

13
**Intermediate Value Theorem**

If a < b are two real numbers and f (x)is a polynomial function with f (a) f (b), then f (x) takes on every real number value between f (a) and f (b) for a x b.

14
**NOTE to Intermediate Value**

Let f (x) be a polynomial function and a < b be two real numbers. If f (a) and f (b) have opposite signs (one positive and one negative), then f (x) = 0 for a < x < b.

15
**Dr. Claude S. Moore Danville Community College**

PRECALCULUS I Polynomial and Synthetic Division Dr. Claude S. Moore Danville Community College

16
**Full Division Algorithm**

If f (x) and d(x) are polynomials with d(x) 0 and the degree of d(x) is less than or equal to the degree of f(x), then q(x) and r (x) are unique polynomials such that f (x) = d(x) ·q(x) + r (x) where r (x) = 0 or has a degree less than d(x).

17
**Short Division Algorithm**

f (x) = d(x) ·q(x) + r (x) dividend quotient divisor remainder where r (x) = 0 or has a degree less than d(x).

18
**ax3 + bx2 + cx + d divided by x - k**

Synthetic Division ax3 + bx2 + cx + d divided by x - k k a b c d ka a r coefficients of quotient remainder 1. Copy leading coefficient. 2. Multiply diagonally. 3. Add vertically.

19
**the remainder is r = f (k).**

Remainder Theorem If a polynomial f (x) is divided by x - k, the remainder is r = f (k).

20
**Factor Theorem A polynomial f (x) has a factor (x - k)**

if and only if f (k) = 0.

21
**PRECALCULUS I Real Zeros of Polynomial Functions**

Dr. Claude S. Moore Danville Community College

22
**Descartes’s Rule of Signs**

a’s are real numbers, an 0, and a0 0. 1. Number of positive real zeros of f equals number of variations in sign of f(x), or less than that number by an even integer. 2. Number of negative real zeros of f equals number of variations in sign of f(-x), or less than that number by an even integer.

23
**Example 1: Descartes’s Rule of Signs**

a’s are real numbers, an 0, and a0 0. 1. f(x) has two change-of-signs; thus, f(x) has two or zero positive real roots. 2. f(-x) = -4x3 - 5x2 + 6 has one change-of-signs; thus, f(x) has one negative real root.

24
**Example 2: Descartes’s Rule of Signs**

Factor out x; f(x) = x(4x2 - 5x + 6) = xg(x) 1. g(x) has two change-of-signs; thus, g(x) has two or zero positive real roots. 2. g(-x) = 4x2 + 5x + 6 has zero change-of-signs; thus, g(x) has no negative real root.

25
Rational Zero Test If a’s are integers, every rational zero of f has the form rational zero = p/q, in reduced form, and p and q are factors of a0 and an, respectively.

26
**Example 3: Rational Zero Test**

f(x) = 4x3 - 5x p {1, 2, 3, 6} q {1, 2, 4} p/q {1, 2, 3, 6, 1/2, 1/4, 3/2, 3/4} represents all possible rational roots of f(x) = 4x3 - 5x

27
Upper and Lower Bound f(x) is a polynomial with real coefficients and an > 0 with f(x) (x - c), using synthetic division: 1. If c > 0 and each # in last row is either positive or zero, c is an upper bound. 2. If c < 0 and the #’s in the last row alternate positive and negative, c is an lower bound.

28
**Example 4: Upper and Lower Bound**

2x3 - 3x2 - 12x + 8 divided by x + 3 c = -3 < 0 and #’s in last row alternate positive/negative. Thus, x = -3 is a lower bound to real roots.

Similar presentations

OK

Real Zeros of Polynomial Functions. Solve x 3 – 2x + 1 = 0. How? Can you factor this? Can you use the quadratic formula? Now what if I tell you that one.

Real Zeros of Polynomial Functions. Solve x 3 – 2x + 1 = 0. How? Can you factor this? Can you use the quadratic formula? Now what if I tell you that one.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on magic lights Ppt on credit default swaps Dot matrix display ppt on tv Ppt on health tourism in india Ppt on swami vivekananda books Ppt on charge coupled devices Ppt on types of abortion Seminar ppt on mobile number portability Ppt on conservation of environment natural resources Ppt on particles of matter attract each other