# E2Students are expected to identify, describe, and represent the various cross-sections of cubes and rectangular prisms.

## Presentation on theme: "E2Students are expected to identify, describe, and represent the various cross-sections of cubes and rectangular prisms."— Presentation transcript:

E2Students are expected to identify, describe, and represent the various cross-sections of cubes and rectangular prisms.

Questions to Ask Myself  What does a cube look like? How many faces does it have? What do I know about each face? How many edges does it have? How many vertices does it have? Can I create a net for a cube?  Remember a net is a pattern or template that can be cut and folded to make a geometric solid.  What are the properties of a rectangular prism? Can I create a net for this solid?

A cross-section is the 2-D shape of the face produced when a plane cut is made through a solid. What is a cross-section of a solid? How do I identify one? How do I describe it and represent it?

Introductory Activity : parallel to its base cut down through its vertex cut in a plane parallel to a plane of symmetry cut obliquely (slanting, not parallel to its base) towards its base Let’s create several cross-sections for a circular cone. We can make cross-sections by cutting a cone in several different ways:

Results: If the cone is cut in any plane parallel to its base, the face produced is a circle. If it is cut down through its vertex, the exposed face is a triangle. If it is cut in a plane parallel to a plane of symmetry, the shape below is produced. If the cone is cut obliquely – not parallel to its base – the face produced is an oval. Scan shape for plane of symmetry cut

Let’s Practice Making Cross-Sections with a Triangular Prism: We can make cross-sections of a prism by: by making a cut that is parallel to its base by making a cut parallel to one of its rectangular faces by cutting obliquely (slanting) towards its base by cutting obliquely to a rectangular face You should start at a vertex, as well as, at different points along the edges of the prism

A plane cut can be made in several ways : Investigating Cross-Sections of a Prism by Making Plane Cuts by making a cut that is parallel to its base by making a cut parallel to one of the prism’s rectangular faces by cutting obliquely (slanting) towards its base by cutting obliquely to a rectangular face You should start at a vertex, as well as, at different points along the edges of the prism

1. Go the center assigned to your group. 2. Visualize the shape that will be made when you make a cross section of the solid at the center. Record your prediction. 3. Use one of the solids at your center and the other materials to make the cross- section you visualized. Record your result. 4. Now repeat the procedure 1 to 3 for the two other solids at the center. 5. Move to the other centers when directed. Let’s Begin!

Centers: Center 1: Materials: Directions 4 Rice crispie squares Elastic Butter knife Recording sheet Center 4: Materials: Directions 4 Cheese cubes Elastic Butter knife Recording sheet Center 3: Materials: Directions 4 Plasticine rectangular prisms Elastic Fishing line Recording sheet Center 2: Materials: Directions 1 clear cube Water Large container Recording sheet

Center 2 Directions: 1.In this center you will examine cross-sections not by cutting, but by using water and a clear cube. You will examine the shapes that can be made by the surface of the water when you tip the cube in different ways. 2.First, decide which way you will tip the water in the cube. You can still think about the types of plane cuts we discussed earlier to help you here (parallel to face, oblique, beginning at a vertex, beginning at a different point along the edge of the solid). 3.Visualize the shape that will be made when you make this cross section. Record your prediction on the recording sheet using a careful sketch. Remember to draw the shape that you think will be left after the water is tipped. Then shade in the face that was exposed. 4.Make this cross-section by tipping the water in the way you chose earlier. Carefully look at the 2-D face that has been left on the solid after the ‘cut’. Compare this to your earlier prediction. Record your result using a sketch as above. 5.Using a different way of tipping the cube, now repeat the procedure 1 to 4 twice.