Download presentation

Presentation is loading. Please wait.

Published byJavion Yeats Modified over 2 years ago

1
Shell model studies along the N~126 line Zsolt Podolyák

2
“Shell-model” nuclei Shape transition, triaxiality 707874 122 110 N Z L.M. Robledo et al., J. Phys. G. 36, 115104 (2009). H. Grawe, K. Langanke, G. Martinez-Pinedo, Rep.Progr.Phys.70 (2007)1525.

3
Isomeric states around 208 Pb 208 Hg, 209 Tl N. Aldahan et al., PRC80, 061302(R) (2009). Isomeric state RISING: isomeric decays S. Steer et al., Int. J. Mod. Phys. E18, 759 (2009) and to be published ■ ■ * A. Gottardo et al.

4
In box: E(4 + )/E(2 + ) ratio Even-even nuclei around 208 Pb

5
π ν In the beta decay of the r-process path nuclei: The FF ν i 13/2 -> πh 11/2 dominates; also GT νh 9/2 ->πh 11/2

6
Zs. Podolyák et al., Phys. Lett. B 672 (2009) 116. Internal charged particle decay Internal gamma decay 205 Au: three proton-hole nucleus Gammas following beta decay AIDA will do much better with conversion electrons

7
Shell-model calculations (M.Górska, H.Grawe, H. Maier, A.Brown) (a)and (d):TBME from L.Rydstrom et al, NPA512(1990)217 (based on Kuo-Brown interaction) (b) and (c): three TBMEs modified Δ(d 3/2 h 11/2 ; d 3/2 h 11/2 ) 7- = +135 keV Δ(s 1/2 d 5/2 ; s 1/2 d 5/2 ) 2+,3+ =+230 keV (monopole only) Δ(d 3/2 h 11/2 ; s 1/2 h 11/2 ) 6- changed to +0.160 MeV (fit for B(E2) Good description of energies and B(EL)s S.Steer et al., Phys. Rev C78 (2008) 061302(R)

8
Variation of key non-diagonal TBME to fit E2 strengths. The effective proton charge used in the SM is 1.35 e which is smaller than the adopted value of 1.5 e. Note that the upper experimental limit for the 7- → 5- is increased by a factor of about five if the (unknown) transition energy is below the Pt M edge. The vertical dashed line represents the adopted TBME value, which is given in MeV.

9
203Ir b) modified; a) original

10
Effective charges: 1.5e for E2 and 2.0e for E3 (to reproduce 206Hg) Transition strengths in N=126 nuclei Good description of N=126 nuclei after small modifications of TBMEs 203Ir B(E2:23/2+->19/2+) 0.02(1) b) 3.58 0.013

11
N=125; Z=78 203 Pt

12
Structure: N=126 nuclei ( 205 Au, 204 Pt, 203 Ir) changes in TBME helps/needed N=128 nuclei ( 208 Hg, 209 Tl) agreement with shell model N<126 nuclei ( 203 Pt etc) shell model has difficulties Conclusions

13
Approved experiment on the book 205 Au: beta decay from 205 Pt => will fix the πs 1/2 orbital 203 Ir: beta decay from 203 Os (νg 9/2 ) => will fix the πd 3/2,πs 1/2,πh 11/2 202 Os: isomeric decay I=(5),(7),(10) 202 Os: beta decay of 203 Ir (νg 9/2 ) 3/2+ 0 1/2+ 240 11/2- 921 0+ 0 2+ 1181 4+ 1555 7- 1893 5- 1932 10+ 2673 8- 2558 8+ 2685 205 Au 202 Os shell model +fast-timing measurements: 206 Hg: 7 - -> 5 - ~1.2ns(1W.u.) … Future

14
Shell-model calc. (H. Grawe) TBME: from E.K. Warburton, PRC44, (1991) 233; are based on the Kuo-Herling realistic int. Single particle energies: 207 Tl and 209 Pb exp.

15
( νg 2 9/2 ) states; 2 + mixed with πs -1 1/2 d -1 3/2 B(E2)=1.22 W.u. SM B(E2)=1.95(39)-1.58(22) W.u. exp. 208 Hg: Isomer: 8 + ( νg 2 9/2 )

16
209 Tl : Isomer: 17/2 + ; ( νg 2 9/2 ) (πs -1 1/2 ) 17/2 + ->13/2 + Δ 13/2 + ->9/2 + 137 keV 9/2 + ->7/2 + Δ, allowed M1 7/2 + ->3/2 + 661 keV 3/2 + ->1/2 + 324 keV E2(+M1) B(E2)=0.96 W.u. SM B(E2)=1.87(22)-1.51(18) W.u. exp. 209Tl: previously from (t,α) and alpha decay. (t,α): C. Ellegaard, P.D. Barnes and E.R. Flynn, Nucl. Phys. A259 (1976) 435.

17
N. Aldahan et al., Phys. Rev. C80, 061302(R) (2009).Theory: H. Grawe N=128 nuclei: energies in 208 Hg, 209 Tl are OK problems with transition strengths

18
-single-particle energies are taken from the experimental spectra of 207Tl and 209Pb. -TBME are from E.K. Warburton, Phys. Rev. C44, (1991) 233 ; are based on the Kuo-Herling realistic interaction for pp and nn TBME derived from a free nucleon-nucleon (NN) potential with core polarisation renormalisation due to the finite model space. Standard shell-model calculations for N≥126,Z≤82 Problems: -energies and ordering of states in 204 Pt, 205 Au and others -problems with transition strengths in 204 Pt, 205 Au, 208 Hg, 209 Tl

20
Aim: measure B(E2; 0+->2+) via Coulomb excitation

21
H. Grawe, K. Langanke, G. Martinez-Pinedo, Rep. Prog. Phys. 70, 1525 (2007) The FF ν i 13/2 -> πh 11/2 dominates; also GT νh 9/2 ->πh 11/2 Half-lives of neutron-rich N~126 nuclei N=126 r-process path nuclei

22
( νg 2 9/2 ) states; 2 + mixed with πs -1 1/2 d -1 3/2 B(E2)=1.22 W.u. SM B(E2)=1.95(39)-1.58(22) W.u. exp. N=128 nucleus 208 Hg: Isomer: 8 + ( νg 2 9/2 ) Shell-model calc. (H. Grawe) TBME: from E.K. Warburton, PRC44, (1991) 233; based on the Kuo-Herling realistic int. Single particle energies: 207 Tl and 209 Pb exp.

23
N=128 nucleus 209 Tl : Isomer: 17/2 + ; ( νg 2 9/2 ) (πs -1 1/2 ) 17/2 + ->13/2 + Δ 13/2 + ->9/2 + 137 keV 9/2 + ->7/2 + Δ, allowed M1 7/2 + ->3/2 + 661 keV 3/2 + ->1/2 + 324 keV E2(+M1) B(E2)=0.96 W.u. SM B(E2)=1.87(22)-1.51(18) W.u. exp. 209Tl: previously from (t,α) and alpha decay. (t,α): C. Ellegaard, P.D. Barnes and E.R. Flynn, Nucl. Phys. A259 (1976) 435.

24
N. Al-Dahan et al., Phys. Rev. C80, 061302(R) (2009).Theory: H. Grawe energies in 208 Hg, 209 Tl are OK small (?) problems with transition strengths => Good description of N=128 nuclei

25
~1/(Δl+Δn) N>126, Z<82 nuclei Mass measurement of 208 Hg (GSI storage ring) L. Chen et al., PRL102 (2009) 122503. proton neutron i13/2 i11/2 g9/2 Z=82 N=126 s1/2 p1/2 d3/2 f5/2

26
Shell-model calculations (M.Górska, H.Grawe, H. Maier, A.Brown) (a)and (d):TBME from L.Rydstrom et al, NPA512(1990)217 (based on Kuo-Brown interaction) (b) and (c): three TBMEs modified Δ(d 3/2 h 11/2 ; d 3/2 h 11/2 ) 7- = +135 keV Δ(s 1/2 d 5/2 ; s 1/2 d 5/2 ) 2+,3+ =+230 keV (monopole only) Δ(d 3/2 h 11/2 ; s 1/2 h 11/2 ) 6- changed to +0.160 MeV (fit for B(E2)) Good description of energies and B(EL)s if TBMEs modified S.J. Steer et al., Phys. Rev C78 (2008) 061302(R)

27
Protons Neutrons Z =126 i

Similar presentations

OK

Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) 272502. P. Adrich, A. Kimkiewicz et al., Phys.Rev.

Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) 272502. P. Adrich, A. Kimkiewicz et al., Phys.Rev.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on 60 years of indian parliament latest Working of flat panel display ppt on tv Ppt on recent trends in indian stock market Ppt on area and perimeter of rectangle File type ppt on cyber crime unit Ppt on squid proxy server Ppt on credit default swaps and the financial crisis Ppt on swami vivekananda free download Ppt on time management for nurses Download ppt on coastal plains of india