Download presentation

Presentation is loading. Please wait.

Published byJosiah Clack Modified over 2 years ago

1
1 Union-find

2
2 Maintain a collection of disjoint sets under the following two operations S 3 = Union(S 1,S 2 ) Find(x) : returns the set containing x

3
3 Union-find We assume there are n fixed elements We start with n sets each containing a single element Each element has a pointer to its representation in the set containing it

4
4 S1 = {e1} S2 = {e2} S3={e3} S4={e4} …… S1 = {e1} A= {e2,e3} S4={e4} …… A = Union(S3,S4) Find(e2) A B = Union(A,S7) S1 = {e1} B= {e2,e3,e7} S4={e4} ……

5
5 Why ? Suppose we want to maintain an equivalence relation: y z t x b v s a y ≡ z

6
6 y, z t x b v s a y ≡ s

7
7 y, z, s t x b v a y ≡ s

8
8 Queries Equivalent?(y,a)

9
9 Can solve this with union-find Each equivalence class is a set y ≡ s union(find(y),find(s)) Equivalent?(y,a) return yes if find(y) = find(a)

10
10 e2 Representation Represent each set by a tree, each node represents an item, the root also represents the set e3e7 B

11
11 Concretely e3 e7 e2 B

12
12 Find(e10) e6 e9 e11 e8e10 C

13
13 Find(e10) e6 e9 e11 e8e10 Find(x) while (x.parent ≠null) do x ← x.parent return (x) C

14
14 D=Union(B,C) B e2 e3 e7 C e6 e9 e11 e8e10

15
15 D=Union(B,C) B e2 e3 e7 C e6 e9 e11 e8e10

16
16 D=Union(B,C) B e2 e3 e7 D e6 e9 e11 e8e10

17
17 D=Union(B,C) B e2 e3 e7 C e6 e9 e11 e8e10

18
18 D=Union(B,C) B e2 e3 e7 C e6 e9 e11 e8e10

19
19 D=Union(B,C) D e2 e3 e7 C e6 e9 e11 e8e10

20
20 Link by size For the find’s sake its better to hang the smaller on the larger

21
21 D=Union(B,C) B e2 e3 e7 C e6 e9 e11 e8e10 5 3 If (C.size > B.size) then B.Parent ← C; C.size = C.size + B.size return (C) Else C.parent ← B; B.size = B.size + C.size return (B)

22
22 D=Union(B,C) B e2 e3 e7 C e6 e9 e11 e8e10 8 3 If (C.size > B.size) then B.Parent ← C; C.size = C.size + B.size return (C) Else C.parent ← B; B.size = B.size + C.size return (B) D

23
23 Analysis Union: O(1) time Find: O(log(n)) time The depth of a tree is at most log(n)

24
24 Proof By induction on the sequence of operations: For every x Depth(x) ≤ log |T(x)| x

25
25 Path compression

Similar presentations

OK

AVL Trees1 Part-F2 AVL Trees 6 3 8 4 v z. AVL Trees2 AVL Tree Definition (§ 9.2) AVL trees are balanced. An AVL Tree is a binary search tree such that.

AVL Trees1 Part-F2 AVL Trees 6 3 8 4 v z. AVL Trees2 AVL Tree Definition (§ 9.2) AVL trees are balanced. An AVL Tree is a binary search tree such that.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on hindu religion holidays Odp to ppt online converter Ppt on 108 ambulance Ppt on current affairs 2012 Free ppt on loch ness monster Ppt on introduction to object-oriented programming examples Ppt on energy conservation Ppt on beautiful places in india Ppt on global warming free download Ppt on business letter writing