Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fruit Fly Genetics. Chromosome Theory of Heredity  Found that genes are located on chromosomes  Discovered Sex-Linkage  Worked with Drosophila  Nobel.

Similar presentations


Presentation on theme: "Fruit Fly Genetics. Chromosome Theory of Heredity  Found that genes are located on chromosomes  Discovered Sex-Linkage  Worked with Drosophila  Nobel."— Presentation transcript:

1 Fruit Fly Genetics

2 Chromosome Theory of Heredity  Found that genes are located on chromosomes  Discovered Sex-Linkage  Worked with Drosophila  Nobel Prize for Physiology / Medicine in Thomas Hunt Morgan

3 Why Drosophila? Short Generation Time Easy to Maintain 4 large chromosomes Easily identifiable Markers (mutant phenotypes)

4 CHROMOSOMES Sex -chromosomes responsible for determining sex of an individual Autosomal- chromosome that is not directly involved in determining sex. Female Male XX /XYII III IV Autosomal Sex---

5 Sexing adult flies

6 wtebonywhite body Wild type- the normal or most common phenotype in a population. Mutant Phenotype- traits that are alternates to the wild type. Changes due to mutations in the wild type. Terminology: Phenotypes

7 Example Phenotypes Wild type Ebony body Vestigial wings Curled wings

8 Wild type vs. ‘white eye’ phenotype WT White eye mutant

9 Nomenclature Use the following format when performing crosses: Autosomal Genes (use + for wt allele) GenotypePhenotype + / + wt (homozygous) vg / + wt (heterozygous) vg / vg +___ mutant wt (homozygous or heterozygous)

10

11

12

13

14 Morgan suggested that this was due to an exchange of equal chromosome segments during synapsis in meiosis which he called crossing over.

15

16 Autosomal Gene Nomenclature Wild-type genes located on autosomal chromosomes are donated “+” by convention (Each allele is represented and is seperated by a “/”) GenotypePhenotype + / + wt (homozygous) vg / +wt (heterozygous) vg / vgmutant

17 Monohybrid Cross Cross breeding organisms while tracking only one trait.

18 Example Monohybrid Cross ++ x vgvg (Wildtype) (Vestigial)

19 F 1 Genotypes vgvg ++vg+vg ++vg+vg F 1 Phenotypic Ratio: 4:4 wt Genotypic Ratio: 4:4 +vg

20 We then cross two F 1 progeny: +vg x +vg (heterozygous)

21

22

23 In a sex-linked cross, the principles are similar but the notation differs. Instead of showing the alleles on the X or Y chromosome, simply use the symbol for the gene that is on the X, for example: w+w+ is a female red-eyed fly. w≠ is a hemizygous white-eyed male. The (≠) denotes the Y chromosome, which in Drosophila carries only a few genes. Keep in mind that w+ is completely dominant to w, and that this is a case of complete sex-linkage.

24 As an example of an X-linked cross, we will look at goggle-eye (unusually prominent eyes), an X-linked recessive trait (g) in Drosophila:

25

26 Example Dihybrid Cross ++/++ x bb/vgvg (Wild type) (Black vestigial)

27 e is ebony body color e+ is wild-type body colour vg is vestigial wing shape vg+ is wild-type wing shape: Dihybrid crosses involve manipulation and analysis of two traits controlled by pairs of alleles at different loci. For example, in the cross ebony body x vestigial wing

28 F2F2

29 F2F2

30

31 Cambell, Reece, Taylor, Simon, and Dickey. Biology: Concepts and Connections, 6 th edition. Benjamin Cummings Publishing Morgan’s fruit flies… F1F1

32 Cambell, Reece, Taylor, Simon, and Dickey. Biology: Concepts and Connections, 6 th edition. Benjamin Cummings Publishing Morgan’s fruit flies… F2F2

33 Virtual Lab Simulation: Drosophila Virtual lab – registration required (continue with silde show for instructions.

34 Objective: Students will learn and apply the principles of Mendelian inheritance by experimentation with the fruit fly Drosophila melanogaster. Students will make hypotheses for monohybrid, dihybrid and sex-linked traits and test their hypotheses by selecting fruit flies with different visible mutations, mating them, and analyzing the phenotypic ratios of the offspring. Students will record their observations into an online notebook and write a lab report. Drosophila Simulation: Patterns of Heredity

35 Last slide (read instructions first!) Click on the Drosophila Link for Registration 1. Create a new account 2. Class code (see last slide) 3. Enter your first and last name (your username will be generated for you) 4. Choose a password ' Write down your user name and passwords! Website:

36 The top tab contains a "notebook" link where you can enter data gathered during your experiments. Also in the notebook tab, you will write your report. All notebook data and report data will be saved and sent to your teacher upon completion. Website’s Notebook:

37 1. Start by ordering two wild type flies and mate them. 2. View your flies under the microscope and sort them. 3. View the flies close-up and note the difference between males and females. 4. Add your data to your notebook. 5. Use the computer to "analyze results" 6. Go to the chi square analysis. Enter your hypothesis. Since both of your parents with wild type, you would expect a 50:50 ratio of male to females. You will need to you a calculator to determine the expected numbers from the total number of offspring you have. Enter that number in the "hypothesis" column. 7. The computer will do the chi square analysis for you and show your statistical results. 8. Return to your notebook and look at your data. 9. "Save" your notebook. **Just play with the simulator for now to see what it does. Remove all your data from your notebook before you start the real assignments. Understanding the Program

38 For Assignment A (choose only one trait) Apterous Black Body Brown Eyes Curved Wings Assignment A: MONOHYBRID CROSS 1. Choose ONE trait from the autosomal mutations on the table to study by ordering flies of the mutant strain and crossing it with a wild type fly. 2. Cross your flies (P generation) and determine the phenotype of the F1 generation. 3. Now mate the offspring (F1) from that cross together (creates F2 generation). Return to the lab and choose "use fly in new mating" under the microscope view. 4. Sort your F2 flies and analyze results. You can choose to ignore sex here, since you know you are studying only autosomal mutations. Show that your results follow a 3:1 ratio. 5. Run a chi square analysis on your F2 flies (again you can ignore sex).

39 Assignment B: SEX-LINKED TRAITS 1. A reciprocal cross is a wild type male x mutant female followed by a mutant male x wild type female. (Obviously, you study the same trait here). Choose an allele found on the sex chromosome. [See chromosome map for sex linked alleles] 2. Show in your notebook how the offspring differ depending on which parent had the mutant phenotype. Be prepared to explain why this happens in your final lab report. You only need to look at the F1 generation here.

40 Assignment C: DIHYBRID CROSS Assignment C: DIHYBRID CROSS 1.Select any two traits on two different chromosomes and study their inheritance patterns (DIHYBRID CROSS) [See chromosome map]. Also be sure that you do not pick any traits that are LETHAL as this will skew your data. (a)Cross an F 1 offspring with another F 1 offspring to generate an F 2 generation. This should demonstrate a 9:3:3:1 Mendelian ratio (b)(b) Test the 9:3:3:1 ratio by using a chi-square analysis.

41 Click: HERE

42 If you are having difficulty, try this virtual lab: LabBench Activity: Genetics of Organisms your resultsGenetics of Organisms


Download ppt "Fruit Fly Genetics. Chromosome Theory of Heredity  Found that genes are located on chromosomes  Discovered Sex-Linkage  Worked with Drosophila  Nobel."

Similar presentations


Ads by Google