Presentation is loading. Please wait.

Presentation is loading. Please wait.

Модель фотосистемы 2 для анализа выхода флуоресценции после действия 10 нс импульса Беляева 1 Н.Е, Ризниченко 1 Г.Ю, Шмитт 2 Ф-И, Пащенко 1 В.З, Рубин.

Similar presentations


Presentation on theme: "Модель фотосистемы 2 для анализа выхода флуоресценции после действия 10 нс импульса Беляева 1 Н.Е, Ризниченко 1 Г.Ю, Шмитт 2 Ф-И, Пащенко 1 В.З, Рубин."— Presentation transcript:

1 Модель фотосистемы 2 для анализа выхода флуоресценции после действия 10 нс импульса Беляева 1 Н.Е, Ризниченко 1 Г.Ю, Шмитт 2 Ф-И, Пащенко 1 В.З, Рубин 1 А.Б, Ренгер 2 Г 1 Биологический факультет Московского государственного университета, , Москва ГСП-2, Ленинские горы, (495) Max-Volmer Laboratory of Optics and Atomic physics, Technical UniVersity Berlin 10623, Germany

2 Тилакоидные мембраны в хлоропласте м (50  100)  м

3 P 100% 10% 1% И н т е н с и в н о с т ь ф л у о р е с ц е н ц и и F 0

4 Exciton Photon ФЛ Exiton

5 k 2 =k STAB +k ’ 2 The molecular mechanisms scheme for the primary charges separation (RRP model) Schatz et al.. Bioph. J Kinetic and energetic model for the primary processes in photosystem II. ktkt Chl P680 + Phe  Q A 1 Chl N * P680 Phe Q A Chl N 1 P680 * Phe Q A k–tk–t Chl P680 + Phe Q A  Chl P680 Phe Q A k1k1 kk h h kk k2k2 k –1 (k’2)(k’2) k A = k  =0.3 ns  1 Roelofs et al Global target analysis of picosecond chlorophyll fluorescence kinetic from pea chloroplasts. Biophys. J. 61, 1147 Mn 4 Tyr-Z P680 Pheo Q A Q B D1D2 cyt b559 Exciton H + H 2 O LHCI I trime rs LHCI I trime rs H + CP43 CP47 CP24 CP26 CP29 33kDa 17kDa 24kDa LHCI I trime rs LHCI I trime rs LHCI I trime rs LHCI I trime rs CP26 CP24 LHCII trimers Photon QAQA Phe P680 + P680*

6 F0F0 F FmFm t, s Mn 4 Tyr-Z P680 Pheo Q A Q B D1D2 cyt b559 Exciton H + H 2 O LHCI I trime rs LHCI I trime rs H + CP43 CP47 CP24 CP26 CP29 33kDa 17kDa 24kDa LHCI I trime rs LHCI I trime rs LHCI I trime rs LHCI I trime rs CP26 CP24 LHCII trimers Photon

7 Phe Q A Q B * Chl P 680 Phe Q A Q B Chl P 680 k HD kFkF k P680+ k 3 CAR (а)(а) - Each rectangle represent a particular kinetic state determined by the redox stateы of its constituent electron carriers. Shaded are the states capable of emitting fluorescence quanta. The decay 1 Chl* via: radiative fluorescence emission (k FL ), nonradiative dissipation to heat (k HD ); by quenching due to cation radical P680  (k P680+ ) or by triplet carotenoid states (k 3Car ) Chl, the total PSII chlorophyll, including the antenna and the P680 pigments; Phe, pheophytin; Q A and Q B, primary and secondary quinone acceptors; PQ, plastoquinone; PQH 2, plastoquinol; H L + and H s + are protons released into lumen and taken up from the stroma, respectively. Bold arrows mark the light steps. The catalytic cycle of photosystem II. K EQ ; k n (ms  1 ) 1 (4) 10; 3.2·10 8 /N eff N eff ; 3· ; 100  ; ; · ·10 5

8 Процессы ФС2, вызываемые светом 46, 47, 48, 49 H s + PQH 2 H s + 2 H s + 2 H s + 2 H s + 2 H s + 2 H s + 2 HL+HL HL+HL PQ HL+HL HL+HL+ 44 Phe Q A Q B - z 2 * Chl P 680 H z 1 g Phe Q A 2 * Chl P 680 g Phe Q A 6 * Chl P g 1 g 5 g Phe Q A 3 Chl P g Phe Q A 7 - Chl P z Phe Q A Q B - 7 H - Chl P z 5 g Phe Q A 4 - Chl P Phe Q A Q B - z 4 H - Chl P Phe Q A Q B - z 3 H Chl P Phe Q A Q B - y 2 * Chl P 680 Phe Q A Q B - z 6 * Chl P 680 H - y 1 Phe Q A Q B x 2 * Chl P 680 Phe Q A Q B x 6 * Chl P Phe Q A Q B - y 6 * Chl P Phe Q A Q B x 7 - Chl P x 5 Phe Q A Q B - y 7 - Chl P y 5 Phe Q A Q B - y 4 - Chl P Phe Q A Q B - y 3 Chl P Phe Q A Q B x 4 - Chl P Phe Q A Q B x 3 Chl P PQ x 1 Phe Q A Chl P 680 Phe Q A Q B - Chl P 680 Phe Q A Q B Chl P 680 Phe Q A Chl P Phe Q A Q B - Chl P 680 B Phe Q A Q - - Chl P 680 Phe Q A Q B - H - Chl P 680 Phe Q A Q B - Chl P 680 H Phe Q A Q B * Chl P 680 Phe Q A Q B Chl P 680 k HD kFkF k P680+ k 3 CAR

9 0 9  50  s 10 s 0 s 100ns 10 ns Протокол режимов освещения образца и выход ФЛ в результате возбуждения 10-ти нс импульсом Belyaeva NE, Schmitt F-J, Steffen, R, Paschenko VZ, Riznichenko G Yu, Chemeris YuK, Renger G, and Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98: 105—119 Модель Эксперимент Single turnover flash induced transients of the fluorescence yield (SFITFY)

10 46, 47, 48, 49 H s + PQH 2 H s + 2 H s + 2 H s + 2 H s + 2 H s + 2 H s + 2 HL+HL HL+HL PQ HL+HL HL+HL+ 44 Phe Q A Q B - z 2 * Chl P 680 H z 1 g Phe Q A 2 * Chl P 680 g Phe Q A 6 * Chl P g 1 g 5 g Phe Q A 3 Chl P g Phe Q A 7 - Chl P z Phe Q A Q B - 7 H - Chl P z 5 g 4 z 4 Phe Q A Q B - z 3 H Chl P Phe Q A Q B - y 2 * Chl P 680 Phe Q A Q B - z 6 * Chl P 680 H - y 1 Phe Q A Q B x 2 * Chl P 680 Phe Q A Q B x 6 * Chl P Phe Q A Q B - y 6 * Chl P Phe Q A Q B x 7 - Chl P x 5 Phe Q A Q B - y 7 - Chl P y 5 y 4 Phe Q A Q B - y 3 Chl P x 4 Phe Q A Q B x 3 Chl P PQ x 1 Phe Q A Chl P 680 Phe Q A Q B - Chl P 680 Phe Q A Q B Chl P 680 Phe Q A Chl P Phe Q A Q B - Chl P 680 B Phe Q A Q - - Chl P 680 Phe Q A Q B - H - Chl P 680 Phe Q A Q B - Chl P 680 H 50ns; S 0  S 1 Имитация процессов ФС2, вызываемых 10 нс импульсом Phe Q A Q B - H - Chl P Phe Q A - Chl P Phe Q A Q B - Chl P Phe Q A Q B - - Chl P  s; S 0  S  s; S 1  S  s; S 2  S 3 1ms; S 3  S 0

11 k L (t)=k L-Max  exp(-t /  ) ;  = 4ns 100%8%4%0.8% k L-Max (s  1 ) 7.2     10 7 photons/(sm 2  flash)7.5     Measuring light 0.8  mol photons m  2 s  1 [ 3 Car(t)] = a Car  exp(  t  3Car ) Листья Arabidopsis thaliana

12 Measuring light 0.8  mol photons m  2 s  1 k L (t)=k L-Max  exp(-t /(4ns )) 100% k L-Max (ms  1 ) 1.5  % k L-Max (ms  1 ) 6  10 5

13 3-quencer model: Steffen R (2003) Time-resolved spectroscopic investigations of photosystem II. PhD thesis. Berlin Steffen R, Eckert H-J, Kelly AA, Dörmann P G and Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis. Biochemistry 44: 3123  3132

14 Анализ SFITFY данных в модели ФС 2: 1)Визуализация редокс состояний; 2) Перенос электрона не зависит от интенсивности света в отличие от процессов диссипации энергии; 3) Применены экспоненциальные функции для описания изменения параметров во времени Для различной интенсивности импульса определили параметры процессов диссипации возбуждения в антенне и при рекомбинации зарядов. =532 nm; fwhm=10 ns k n (s  1 )a Car  3Car = 5.5 ms pH Stroma  0, mV (  , ms) photons/ (cm 2  flash) %k L-Max k HD k Phe 7.5      10 9 ( 1) 7.520(800) 6.2     (500) 3.0     (500) 5.4     (400) Уточнили параметры переноса электрона на акцепторной стороне ФС 2 в листьях Arabidopsis thaliana QA QBQA QB 16; 5.0 QA QBQA QB 10; 1.75

15 Lebedeva GV, Belyaeva NE, Demin OV, Riznichenko GYu, Rubin AB (2002) Kinetic model of primary photosynthetic processes in chloroplasts. Description of the fast phase of chlorophyll fluorescence induction under different light intensities. Biophysics 47: Belyaeva NE, Schmitt F-J, Steffen, R, Paschenko VZ, Riznichenko G Yu, Chemeris YuK, Renger G, and Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98: 105—119

16 Roelofs T.A., LeeC.-H., Holzwarth A.R. Biophys. J V. 61. P Global target analysis of picosecond chlorophyll fluorescence kinetic from pea chloroplasts. Leibl W., Breton J., Deprez J., Trissl H.-W. Photosynth. Res V. 22. P Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes. Schatz G.H., Brock H., Holzwarth A.R. Biophys. J V. 54. P Kinetic and energetic model for the primary processes in photosystem II. Renger, G., Eckert, H.-J., Bergmann, A., Bernarding, J., Liu, B., Napiwotzki, A., Reifarth, F., and Eichler, H. J. (1995) Fluorescence and spectroscopic studies on exciton trapping and electron transfer in photosystem II of higher plants, Aust. J. Plant Physiol. 22, Lazar D. // J. Theor. Biol V. 220, Chlorophyll a Fluorescence Rise Induced by High Light Illumination of Dark-adapted Plant Tissue Studied by Means of a Model of Photosystem II and Considering Photosystem II Heterogeneity. Xin-Guang Zhu, Govindjee, Neil R.Baker, Eric deSturler, Donald R.Ort, Stephen P. Long. Chlorophyll afluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta (2005) 223:114 –133 Stirbet A., Govindjee, Strasser B.J., Strasser R.J. // J. Theor. Biol V Chlorophyll a fluorescence induction in higher plants: modeling and numerical simulation [1] Lebedeva G.V., Belyaeva N.E., Demin O.V, Riznichenko G.Yu., Rubin A.B. Biofizika, 2002, v.47, n.6, [2] Strasser R.J., Srivastava A., Govindgee. Photochem. and Photobiol , [3] Bulychev A.A., Wredenberg W.J. Bioelectrochemistry , [4] Lebedeva G.V., Belyaeva N.E., Riznichenko G.Yu., Rubin A.B., Demin O.V. Zh. Fiz. Khim., 2000, v.74, Strasser R.J., Tsimilli-Michael M., Srivastava A. // in G.C.Papageorgiou and Govindjee (eds):Chlorophyll Fluorescence:A Signature of Photosynthesis Analysis of the Chlorophyll a Fluorescence Transient 1. Лебедева Г.В., Беляева Н.Е., Дёмин О.В., Ризниченко Г.Ю., Рубин А.Б. Кинетическая модель первичных процессов фотосинтеза в хлоропластах. Биофизика, 2002, т. 47, вып.6, с Н.Е. Беляева, А.А. Булычев, Г.Ю. Ризниченко Применение модели ФС2 для анализа нарастания выхода флуоресценции, вызываемой постоянным светом. В сб. «Математика. Компьютер. Образование.» 2007, вып.14,. т.2, P. Horton & A.V. Ruban. Regulation of Photosystem II Photosynth. Res. 1992, 34: D. Bruce, G. Samson, and C. Carpenter The Origins of Nonphotochemical Quenching of Chlorophyll Fluorescence in Photosynthesis. Direct Quenching by P680 + in Photosystem II Enriched Membranes at Low pH Biochemistry, 1997, 36 (4), G. Schansker S. Z. Tótha and R. J. Strasser, Bioch. Bioph. Acta (BBA) - Bioenergetics V. 1757, 7, 2006, P Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor sideaBioch. Bioph. Acta (BBA) - BioenergeticsV. 1757, 7 Natalia A. Krupenina, Alexander A. Bulychev Action potential in a plant cell lowers the light requirement for non-photochemical energy- dependent quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 1767 (2007) 781–788 Henning Hormann, Christian Neubauer and Ulrich Schreiber On the relationship between chlorophyll fluorescence quenching quantum yield of electron transport in isolated thylakoids Photosynthesis Research 40: , 1994.

17 X i ‑ concentration of i-th metabolite. Mathematical model : Electron carriers grouped in pigment – protein complexes. The time dependence of probabilities of the ith states of the complex : The initial probabilities are p i (0)=b i, i=1,...l. Concentrations of the mobile carrier in the oxidized and reduced forms: Complex concentrations participating in transfer step : k i ‑ bimolecular rate constants.

18 The rate constants : Equilibrium constants of oxidation-reduction reactions:  E m is the difference of midpoint redox potentials.  -dependence of kinetic constants : k + (  )=exp(-  /(RT/F))  k + k – (  )=exp((1-  )  /(RT/F))  k –  i indicates the contribution of each electrogenic step to  generation,  - the part of the membrane potential, which influences the rate constant of the direct reaction (k + ). Time dependence of  :(с m /F)  (d(  )/dt)= V(q lumen ) –V(q stroma ) с m is the apportioned capacity of the thylakoid membrane, F is Faraday constant, q lumen ( stroma ) ‑ the lumenal (stromal) charge. The fluorescence yield :

19 To describe the ATP synthesis we used the expression based on the minimal kinetic scheme of ATP synthesis-hydrolysis reaction: Consumption of the transmembrane electrochemical potential Where  =F  /RT. The dependence of the proton leakage on the potential was considered according to the mechanism of ion transfer trough the three barrier channel : The similar expression was used to describe K + transfer : :


Download ppt "Модель фотосистемы 2 для анализа выхода флуоресценции после действия 10 нс импульса Беляева 1 Н.Е, Ризниченко 1 Г.Ю, Шмитт 2 Ф-И, Пащенко 1 В.З, Рубин."

Similar presentations


Ads by Google