Presentation is loading. Please wait.

Presentation is loading. Please wait.

2M-S3, IKI, Oct.10-14 2011C. d'Uston : Laser methods for planetary surface composition 1 LASER BASED METHODS FOR SURFACE COMPOSITION ANALYSIS FOR IN SITU.

Similar presentations


Presentation on theme: "2M-S3, IKI, Oct.10-14 2011C. d'Uston : Laser methods for planetary surface composition 1 LASER BASED METHODS FOR SURFACE COMPOSITION ANALYSIS FOR IN SITU."— Presentation transcript:

1 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 1 LASER BASED METHODS FOR SURFACE COMPOSITION ANALYSIS FOR IN SITU PLANETARY EXPLORATION. C. d’Uston, O. Gasnault, S. Maurice, Institut de Recherche en Astrophysique et Planétologie, 9 Avenue du Colonel Roche, Toulouse, France. Contact:

2 What is needed ? Laser Induced Breakdown Spectroscopy –Basic principle –What can be mesured ? –Necessary technical performances –CHEMCAM for Mars Science Laboratory Raman Spectroscopy –Basic principleWhat can be mesured ? –What can be mesured ? –Necessary performances –RLS for Exomars Future developments 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 2 Content

3 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 3 In situ surface analysis goals To explore the planetary environments To gain knowledge of the geological history –To provide identification and characterisation of minerals and biomarkers. –general mineralogical information for igneous, metamorphous, and sedimentary processes, especially water-related geo-processes. To investigate the relationship between water and climate change. To identify organic compounds and search for life

4 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 4 Two laser based methods of analysis have been considered and developped for in situ planetary exploration

5 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 5 Raman spectroscopy is used to study vibrational, rotational, and other low- frequency modes of a mineral. It relies on inelastic scattering, or Raman scattering, of monochromatic laser light. The laser- matter interaction results in the energy of the laser photons to be shifted up or down. The shift in energy gives information about the phonon modes in the system. It therefore provides a fingerprint by which the molecule can be identified. LIBS method Doesn’t need sample collection, handling and preparation Removes the superficial dust layer down to a depth of ~0.5mm Allows a fast measurement of the chemical elements Analyses punctual spots on the target sample of ~50  m and therefore is requested to be associated to high resolution imaging

6 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 6

7 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 7

8 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 8 Si Ca Mg O Distance vs. peak height

9 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 9 ChemCam Principal Investigator: Roger Wiens Los Alamos National Laboratory With co-responsibility of IRAP (Toulouse) Mast Unit ChemCam performs elemental analyses through laser-induced breakdown spectroscopy (LIBS) Rapid characterization of rocks and soils up to seven meters away Will identify and classify rocks, soils, pebbles, hydrated minerals, weathering layers, and ices Analysis spot size < 0.5 mm nm spectral range Dust removal; depth profiling to > 0.5 mm High-resolution context imaging (resolves ~1 mm at 7m) Body Unit J.-L. Lacour (CEA)

10 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 10

11 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 11 NAu-2 Hi-S NAu-2 Med-SNAu-2 Low-S KGa-2 Med-S GraphiteShergottitePicriteNorite Macusanite

12 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 12 Spectrometers (3 crossed Czerny-Turner) Heaters (set to -45 deg C) Thermo-Electric Cooler & cables Electronics Fiber Inlet From telescope Optical Demultiplexer Fiber Bundles

13 LIBS spectrum 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 13

14 CHEMCAM characteristics 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 14 LIBS Range : 2-9m Depth profile rate in basalt /sand : ~0.4  m/0.1mm per pulse Analysis spot : 0.5-1mm diam Laser power : 30mJ/pulse Laser wavelength : 1067nm Pulse rate : 10Hz pulses per burst : 75 Recharge time : 40sec/burst Repetition rate : 45sec Spectrometer range : nm in three segments Spectral resolution : nm CCDs # pixels : 2048 Sigal/noise : 250 RMI Optic design : Schmidt Aperture : 100mm diam Range : 2m to infinity Spatial resolution : 80  rad Wavelength range :800_1000nm Exposure range : 2ms - 8s Nominal exposure : 75ms MTF at Nyquist : Overall Mass :10.7 kg Volume : 9 liter Power : 12.8W to 64.7 W Data volume : 12 Mb/sol

15 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 15

16 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 16 Rover Family Portrait Spirit and Opportunity 2003 Sojourner 1996 Curiosity 2011

17 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 17 Raman spectroscopy is used to study vibrational, rotational, and other low- frequency modes of a mineral. It relies on inelastic scattering, or Raman scattering, of monochromatic laser light. The laser- matter interaction results in the energy of the laser photons to be shifted up or down. The shift in energy gives information about the phonon modes in the system. It therefore provides a fingerprint by which the molecule can be identified.        Laser   Raman spectroscopy is used to study vibrational, rotational, and other low-frequency modes of a mineral. It relies on inelastic scattering, or Raman scattering, of monochromatic laser light. The laser-matter interaction results in the energy of the laser photons to be shifted up or down. The shift in energy gives information about the phonon modes in the system. It therefore provides a fingerprint by which the molecule can be identified. Raman spectroscopy basics

18 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 18 Raman Basics  A continuous laser beam excites a solid target Spectro.  Raman spectral patterns allows unambiguous identification of minerals, water ice and organic molecules  Inelastic scattering related to vibration of molecules ( vibrational Raman effect ) When light impinges on it, a molecule scatters it in all the directions. The majority of these emitted photons have the same wavelength (called elastic or Rayleigh scattering) and only a minute amount a different wavelength (called inelastic or Raman scattering). Laser

19 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 19

20 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 20 The Raman spectroscopy provides a powerful tool for the definitive identification and characterisation of minerals and biomarkers. Raman spectroscopy is sensitive to the composition and structure of any mineral or organic compound. identify organic compound and search for life identify the mineral products and indicators of biologic activities characterize mineral phases produced by water-related processes characterize igneous minerals and their alteration products characterise the water/ geochemical environment as a function of depth in the shallow subsurface;

21 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 21

22 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 22 Excitation wavelength: 532 nm Irrdiance 0.8 – 1.2 kW/cm 2 Spectral range: cm-1 Spectral resolution: < 10cm-1 Operative Temperature: -40 to -10°C Spot size: 50 microns

23 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 23

24 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 24

25 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 25 Raman Spectrum Identification of calcite in Vaca Muerta mesosiderite Comparison with a reference spectrum Meteorite Sample Spectra of ice, epsom salt, water and gypsum.

26 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 26 Jarosite World type locality of Jarosite

27 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 27 Rover ExoMars

28 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 28 In future Combine both LIBS & Raman within one instrument Develop lasers for other ranges of operating temperature (Venus, Moon, …) Add LIFS capacity (fluorescence spectrometry)

29 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 29 END Thank you for your attention

30 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 30

31 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 31 Note pour la correspondance entre longueur d’onde et nombre d’onde utilisé en spectroscopie Raman (d’après l’explication de F. Rull) En spectroscopie Raman, c’est le décalage en nombre d’onde k R, qui caractérise l’émission d’une composante moléculaire. C’est donc par référence à la source excitatrice que l’on se place. Celle-ci étant caractérisée par une longueur d’onde λ 0, le nombre d’onde k 0 qui lui est associé est : k 0 (cm -1 )= 10 7 / λ 0 (nm) Le nombre d’onde k associé au décalage Raman k R pour une excitation k 0, témoigne de la diminution de l’énergie des photons et donc à un accroissement de la longueur d’onde; il est donné par : k = k 0 – k R (cm-1) Et la longueur d’onde associée est donc : λ (nm) = 10 7 / k(cm -1 ) Ex. : λ 0 = 532nm et k R = 1086 cm-1  λ = 564,6nm

32 2M-S3, IKI, Oct C. d'Uston : Laser methods for planetary surface composition 32 Calcul de correspondance entre nombre d’onde du décalage Raman et longueur d’onde Input : 1.Excitation wavelength 2. A – Raman shift B – observed wavelength


Download ppt "2M-S3, IKI, Oct.10-14 2011C. d'Uston : Laser methods for planetary surface composition 1 LASER BASED METHODS FOR SURFACE COMPOSITION ANALYSIS FOR IN SITU."

Similar presentations


Ads by Google