# Thermobarometry Lecture 12. We now have enough thermodynamics to put it to some real use: calculating the temperatures and pressures at which mineral.

## Presentation on theme: "Thermobarometry Lecture 12. We now have enough thermodynamics to put it to some real use: calculating the temperatures and pressures at which mineral."— Presentation transcript:

Thermobarometry Lecture 12

We now have enough thermodynamics to put it to some real use: calculating the temperatures and pressures at which mineral assemblages (i.e., rocks) equilibrated within the Earth.

Some theoretical considerations We have seen that which phase assemblage is stable and the composition of those phases depends on ∆G r, which we use to calculate K o We also know ∆G r depends on T and P. Reactions that make good geothermometers are those that depend strongly on T. o What would characterize a good geothermometer? Similarly, a good geobarometer would be one strongly depending on P A good geothermometer will have large ∆H; a good geobarometer will have large ∆V.

Univariant Reactions Univariant (or invariant) reactions provide possible thermobarometers. There are 3 phases in the Al 2 Si 2 O 5 system. o When two coexist, we need only specify either T or P, the other is then fixed. o All three can coexist at just one T and P. o First is rare, second is rarer.

Garnet Peridotite Geobarometry Original approach of Wood and Banno generally assumed ideal solution Garnet becomes the high pressure aluminous phase in the mantle, replacing spinel. Aluminum also dissolves in the orthopyroxene (also clinopyroxene) We can write the reaction as: Mg 2 Si 2 O 6 +MgAl 2 SiO 6 = Mg 3 Al 2 Si 3 O 12 l.h.s. is the opx solid solution - Al end member does not exist as pure phase. Significant volume change associated with this reaction (but also depends on T). Other complexities arise from Ca, Fe, and Cr in phases.

Garnet Peridotite Geobarometry Subsequent refinements used asymmetric solution model to match experimental data. Recognize two distinct sites in opx crystal: o Smaller M1: Al substitutes here o Larger M2: Ca substitutes here P given by where C 3 is constant and other parameters depend on K, T, and composition.

Solvus Equilibria Another kind of thermobarometer is based on exsolution of two phases from a homogenous single phase solution. This occurs when the excess free energy exceeds the ideal solution term and inflections develop, as in the alkali feldspar system. Because it is strongly temperature dependent and not particularly pressure dependent, this makes a good geothermometer.

Temperature in Peridotites Temperatures calculated from compositions of co-existing orthopyroxene (enstatite) and clinopyroxene (diopside) solid solutions, which depend on T. Ca 2+ 

Exchange Reactions There are a number of common minerals where one or more ions substitutes for others in a solid solution. o The Fe 2+ –Mg 2+ substitution is common in ferromagnesian minerals. Let’s consider the exchange of Mg and Fe between olivine and a melt containing Mg and Fe. o This partitioning of these two ions between melt and olivine depends on temperature. o We can use a electron microprobe to measure the composition of olivine and co-existing melt (preserved as glass).

Olvine-Melt Geothermometer Reaction of interest can be written as: MgO ol + FeO l = MgO l + FeO ol o (note, this does not involve redox, so we write it in terms of oxides since these are conventionally reported in analyses. We could write it in terms of ions, however.) Assuming both solid and liquid solutions are ideal, the equilibrium constant for this reaction is: Unfortunately ∆H for the reaction above is small, so it has weak temperature dependence.

Roeder & Emslie Geothermometer Roeder & Emslie (1970) decided to consider two separate reactions: MgO liq –> MgO Ol and FeO liq –> FeO Ol Based on empirical data, they deduced the temperature dependence as: and See Example 4.3 for how to do the calculation - biggest effort is simply converting wt. percent to mole fraction.

Buddington and Lindsley Oxide Geothermometer Recall this diagram from Chapter 3 Things get interesting in real systems containing Ti, because both magnetite and hematite are solid solutions. Partition of Fe and Ti between the two depends on T and ƒ O2.

The reaction of interest is: yFe 2 TiO 4 + (1-y)Fe 3 O 4 + ¼O 2 = yFeTiO 3 + ( 3 / 2 -y)Fe 2 O 3 magnetite s.s. hematite s.s. The equilibrium constant for this reaction is The reaction can be thought of as a combination of an exchange reaction: Fe 3 O 4 + FeTiO 3 = Fe 3 TiO 4 + Fe 2 O 3 magnetite + illmenite = ulvospinel + hematite plus the oxidation of magnetite to hematite: 4Fe 3 O 4 + O 2 = 6Fe 2 O 3 Buddington and Lindsley Oxide Geothermometer

Computing Temperature and Oxygen Fugacity The calculation is complex because the system cannot be treated as ideal (except titanomagnetite above 800˚C). Equilibrium constant is: and Must calculate λ’s using asymmetric solution model (using interaction parameters), then solve for T and ƒ O2. Example 4.4 shows how.

Download ppt "Thermobarometry Lecture 12. We now have enough thermodynamics to put it to some real use: calculating the temperatures and pressures at which mineral."

Similar presentations