Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 of 141 Sergio Masuelli November 2010 Fortaleza Brasil System Engineer of SAC-D Geophysical Applications for MWR Professor.

Similar presentations


Presentation on theme: "1 of 141 Sergio Masuelli November 2010 Fortaleza Brasil System Engineer of SAC-D Geophysical Applications for MWR Professor."— Presentation transcript:

1 1 of 141 Sergio Masuelli November 2010 Fortaleza Brasil System Engineer of SAC-D Geophysical Applications for MWR Professor of Gulich Institute (CONAE-UNC)

2 2 of 141 Index 1) Activities of Gulich Institute 2) Aearte Master 3) Introduction to MWR 4) L1 to L2 project plan 5) Surface retrievals 6) Atmospheric Retrievals 7) Sea Ice Concentration 8) L2 Simulator

3 3 of 141 GULICH INSTITUTE CETT SAC-C MOC Instituto Gulich

4 4 of 141 GULICH INSTITUTE Instituto de Altos Estudios Espaciales Mario Gulich CONAE-UNC Natural Emergencies: National Emergencies Services Images supply Users support Courses: Non Qualified Users National Courses (INTA, 2004) International Charter (Regional PM, 2006) Activities began in 2001 Health Applications: Scientific Support to Health Authorities Landscape study of vector dynamic. Spatial Modelling of vector dynamic. Regional Courses (Latinoamérica, 2006)

5 5 of 141 ρ = Densidad de mosquitos DR = tensor de Difusión DW = Tensor de Rugosidad V = Velicidad Viento Superficie KH = Tensor de Atracción H = Campo de Atracción  = Tasa de nacimientos β = Tasa de muertes Modelado espacio-temporal de la densidad de Culicidos en escenarios heterogéneos derivados de información de sensores remotos. S. Masuelli, C. H. Rotela, M. Lamfri, C.M. Scavuzzo Orán La Ecuación representa el modelo básico de difusión. El primer término representa la difusión, el segundo el transporte por el viento y el tercero la atracción por mamíferos (humanos). La ultima corresponde a los términos Fuente y Sumidero.

6 6 of 141 AEARTE MASTER Speciality branches: Applications on Natural Disasters Planning and Scheduling Applications on Human, Animal and Vegetal Epidemiology.

7 7 of 141 AEARTE MASTER OBJECTIVES To specialize professionals for the interdisciplinary managing of Emergencies by doing effective use of space technologies, geoprocessing and AI P&S technologies. To promote research related to the factors originating natural Disasters including buds of agricultural, animal or human plagues. This would allow preparing strategies of Emergency prevention, monitoring, control and response. To make possible the application of the most modern technologies to the aims of gathering, summarize, analysis and diffusion of data.

8 8 of 141 Introduction to MWR

9 9 of 141 MWR swath width is ~380km, displaced 272km across-track (towards the right), wich overlaps the Aquarius instrument swath. MWR IFOV ~40km Introduction to MWR

10 10 of 141 Conical Arc SUN Introduction to MWR

11 11 of 141 Introduction to MWR MWR beam overlapping along track 40 km 13 km 3 times

12 12 of 141 Objective: To obtain the Geophysical Variables WS: Wind Speed Surface: WD: Wind Direction IC: Ice Concentration WV: Water Vapor Atmosphere: LWC: Liquid Water Content RW: Rain Water Introduction to MWR

13 13 of 141 Introduction to MWR Schematic Microwave Radiative Transfer Model [Thompson, 2004]. Up-welling Brightness Atmospheric Emission Surface Emission Down-welling Brightness Reflected Atmospheric Brightness Microwave Antenna Atmospheric Absorption Radiative Transfer Model

14 14 of 141 Introduction to MWR P i  G i  TB* i  where TB* i  P 0 1,…, P i,…, P 0 N  We have 6 Ps but only 4 TBs TB j  F  P  j Forward problem P  G  TB  Inverse problem Geophysical Variables P: WS, WD, IC, WV, LWC, RW The Retrieval Problem ?

15 15 of 141 L1 to L2 project plan ATBD Simulators Depuration of Algorithms Application PrototypeCalibration Prototype General Scheme of the Development Plan

16 16 of 141 Surface retrievals Insensitive on atmospheric changes Wind Retrieval. AVH Algorithm A(WS,SST,f) T BH T BV F 0 (SST) (AT BV − T BH ) - F(SST) = C 0 (WS)+C 1 (WS)COS( χ )+C 2 (WS)COS(2 χ ) Does C’S converge? F(SST) = (AT BV − T BH ) − [C 0 (WS)+C 1 (WS)COS( χ )+ C 2 (WS)COS(2 χ )] No Yes END (AT BV − T BH ) - F(SST) - C 0 (WS) =C 1 (WS)COS( χ )+C 2 (WS)COS(2 χ )

17 17 of 141 Surface retrievals EDR Wind Speed, m/s Wind Speed CFRSL Preliminary Results (AVH) AVH Wind Speed, m/s

18 18 of 141 Surface retrievals AVH Wind Direction, degree Wind Direction CFRSL Preliminary Results (AVH) AVH Wind Direction, degree

19 19 of 141 Atmospheric retrievals The Cloud Problem

20 20 of 141 Atmospheric retrievals Precipitation and LWC signal (CFRSL)

21 21 of 141 Atmospheric retrievals Non Precipitative Cloud Rainy Cell Rain and Cloud Analysis

22 22 of 141 Sea Ice Concentration Bootstrap Algorithm Nasa Team Algorithm Sea Ice Algorithms

23 23 of 141 Sea Ice Concentration WindSat: 19V & 37V GHz MWR 24V & 37V GHz Longitude, (deg.) MWR Simulated Latitude, (deg.) WindSat First Year Ice Concentration using NT algorithm (CFRSL)

24 24 of 141 Sea Ice Concentration CONAE Sea Ice Algorithm

25 25 of 141 Sea Ice Concentration Obtaining Parameters from a Scatter Plot

26 26 of 141 L2 Simulator External Data Preparation GDAS Internal Data Preparation RTM Data Base IC/WS/WD END L2 Processor It converges? No Yes WV/LWC/RW Data Base L1B1 RTM

27 27 of 141 Fin We have a lot of work to do…..


Download ppt "1 of 141 Sergio Masuelli November 2010 Fortaleza Brasil System Engineer of SAC-D Geophysical Applications for MWR Professor."

Similar presentations


Ads by Google