Download presentation

Presentation is loading. Please wait.

Published byEssence Bolam Modified over 3 years ago

1
Chapter 4 -- Modular Combinational Logic

2
Decoders

3
Decoder Realization

4
More complex decoders

5
Example 4.1 -- Realize f(Q,X,P) = m(0,1,4,6,7) = M(2,3,5)

6
Example 4.1 (concluded)

7
SN 74138 Decoder Module

8
Four-to-one multiplexer design

9
Use a 74151A multiplexer to Realize f(x 1,x 2,x 3 ) = m(0,2,3,5) Figure 4.30

10
Half Adders Figure 4.35 (a) -- (c)

11
Full Adders Figure 4.35 (d) -- (g)

12
Ripple Carry Adder Figure 4.36

13
Addition Time for a Basic Ripple-Carry Adder Let t gate = the propogation delay through a typical logic gate Half adder propagation delays t add = 3 t gate t carry = 2 t gate Full adder propagation delays t add = 3 t gate t carry = 2 t gate Ripple-Carry Adder (n-bits) t add = (n - 1)2 t gate + 3 t gate = (2n + 1) t gate

14
SN7482 Two-Bit Pseudo Parallel Adder Module Package Pin Configuration

15
SN7482 Pseudo Parallel Adder -- Truth Table

16
SN7482 Pseudo Parallel Adder -- Logic Diagram

17
SN7482 Two-Bit Adder -- Logic Equations C1 = C0A1 + C0B1 + A1B1(4.20) 1 = C0C1 + A1C1 + B1C1 + A1B1C0 = C1(C0 + A1 + B1) + A1B1C0 = (C0+A1)(C0+B1)(A1+B1) (C0 +A1+B1) +A1B1C0 = (C0+ A1B1)(A1+B1)(C0 +A1+B1) +A1B1C0(4.21) = [C0(A1+B1)+ C0A1B1](A1+B1)+A1B1C0 = C0A1B1+C0A1B1+C0A1B1+A1B1C0 = C0 A1 B1 Similarly C2 = C1A2 + C1B2 + A2B2(4.22) 2 = C1 A2 B2

18
Add Time for SN7482 Adder Circuits SN7482 propagation delays t 1 = 5 t gate t C1 = 2 t gate t 2 = 6 t gate t C2 = 4 t gate SN7482-based ripple-carry adder (n-bits) t add = (2n + 2) t gate

19
SN7483 Four-Bit Adder Module Package Pin Configuration

20
SN7483 Four-Bit Adder Module -- Logic Diagram

21
SN7483 Four-Bit Adder -- Logic Equations Pi = (BiAi)(Ai + Bi) = (Ai + Bi)(Ai + Bi) = Ai Bi (4.24) i = Pi Ci-1 = Ai Bi Ci-1 (4.25) C1 = [C0(A1B1) + (A1 + B1)] = [C0(A1B1)](A1 + B1) = (C0+(A1B1))(A1 + B1) = C0A1 + C0B1 + A1B1 (4.26) Similarly Ci = Ci-1Ai + Ci-1Bi + AiBi

22
Add Times for SN7483 Adder Circuits SN7483 propagation delays t 1 = 3 t gate t 2 = t 3 = t 4 = 4 t gate t C1 = t C2 = t C3 = t C4 = 3 t gate SN7483-based Ripple-Carry Adder (n-bits) t add = (3m + 1) t gate where m = n/4 .

23
Fully Parallel Three-Bit Adder c 0 = x 0 y 0 (4.30) s 0 = x 0 y 0 c 1 = x 1 y 1 c 0 ’+x 1 y 1 c 0 +x 1 y 1 ’c 0 +x 1 ’y 1 c 0 = x 1 y 1 +(x 1 y 1 )c 0 = x 1 y 1 +(x 1 y 1 )(x 0 y 0 ) (4.31) s 1 = x 1 y 1 c 0 = x 1 y 1 x 0 y 0 c 2 = x 2 y 2 +(x 2 y 2 )c 1 = x 2 y 2 +(x 2 y 2 )[x 1 y 1 +(x 1 y 1 )(x 0 y 0 )] = x 2 y 2 +(x 2 y 2 )(x 1 y 1 )+(x 2 y 2 )(x 1 y 1 )(x 0 y 0 ) (4.32) s 2 = x 2 y 2 c 1 = x 2 y 2 [x 1 y 1 +(x 1 y 1 )(x 0 y 0 )]

24
Add Time for a Fully Parallel Adder Assuming a three-level realization t add = 3 t gate However, the fan in requirements become impractical as n increases.

25
Carry Look-Ahead Adders -- Basic Idea Recall that c i = x i y i + x i c i-1 + y i c i-1 = x i y i + x i y i c i-1 + x i y i c i-1 + x i y i c i-1 + x i y i c i-1 = x i y i + x i y i c i-1 + x i y i c i-1 = x i y i + (x i y i + x i y i )c i-1 = x i y i + (x i y i )c i-1 Letg i = x i y i [carry generate](4.33) p i = x i y i [carry propagate](4.34) Thenc i = g i + p i c i-1 s i = p i c i-1 (4.38)

26
Carry Look-Ahead Adders -- Three-Bit Example c 0 = g 0 (4.35) s 0 = p 0 c 1 = g 1 + p 1 c 0 = g 1 + p 1 g 0 (4.36) s 1 = p 1 c 0 c 2 = g 2 + p 2 c 1 = g 2 + p 2 (g 1 + p 1 g 0 ) = g 2 + p 2 g 1 + p 2 p 1 g 0 (4.37) s 2 = p 2 c 1

27
Carry Look-Ahead Adder Design (c) Figure 4.39

28
Add Times for Carry Look-Ahead Adders Adder modules t g = t p = t s = t gate CLA module t c = 2 t gate Overall t add = t gate + 2 t gate + t gate = 4 t gate

29
Binary Subtraction Circuits Recall that(R) 2 = (P) 2 - (Q) 2 = (P) 2 + (-Q) 2 = (P) 2 + [Q] 2 = (P) 2 + (Q) 2 + 1 For an SN7483 adder ( ) 2 = (A) 2 + (B) 2 + (C0) 2 (4.39) where = 4 3 2 1, A = A4A3A2A1, and B = B4B3B2B1 If C0 = 0, A = P, and B = Q, then ( ) 2 = (P) 2 + (Q) 2. If C0 = 1, A = P, and B = Q, then ( ) 2 = (P) 2 - (Q) 2.

30
Two’s Complement Adder/Subtracter Figure 4.41

31
Arithmetic Overflow Detection a n-1 b n-1 c n-2 c n-1 s n-1 V 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0

32
Overflow Detection Circuits Figure 4.42

Similar presentations

OK

Chapter 4 – Arithmetic Functions and HDLs Logic and Computer Design Fundamentals.

Chapter 4 – Arithmetic Functions and HDLs Logic and Computer Design Fundamentals.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Make a ppt on natural disasters Laser video display ppt online Ppt on leadership styles theories Ppt on beer lambert law path Ppt on l&t finance holdings stock price Ppt on nuclear energy in india Ppt on bluetooth hacking downloads Ppt on cadbury india ltd company Ppt on world environment day pictures Ppt on seven segment display schematic