Presentation is loading. Please wait.

Presentation is loading. Please wait.

Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte.

Similar presentations


Presentation on theme: "Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte."— Presentation transcript:

1 Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte Carlo Studies Monte Carlo Studies Lab Measurements Lab Measurements Pylos Greece April 2007 Calibration of km3 with EAS G. Bourlis, E. P. Christopoulou, N. Fragoulis, N. Gizani, A. Leisos, S. E. Tzamarias, A. Tsirigotis, B. Verganelakis

2 Floating stations The Concept 3 stations with at 16 m 2 scintillator detectors each Angular offset Efficiency Resolution Position reweighting Blind fit Okada model NESTOR: muon 4000m

3 Shower Detection Principle GPS Scintillator-PMT DAQ ~20 m 1 m 2 Minimum Station Set-Up Triangulation  Shower Direction Scintillator-PMT 4·(1W/counter)+30W(PC+electronics) Station Server

4 The Scintillator Module Scintillator 2 Scintillator 3 trigger arrival time

5 Simulation Tools CORSIKA (Extensive Air Shower Simulation) GEANT4 (Scintillation, WLS & PMT response) Fast Simulation also available Number of particles to the ground Energy: 10 5 GeV – GeV

6 Simulation Tools DAQSIM (DAQ Simulation) HOUANA (Analysis & Track Reconstruction) Time (ns) Height (mV) Zentih (degrees)

7 Simulation Tools GEANT4 Muon Propagation to KM3 HOU-KM3 Muon track (s) reconstruction dmdm L-d m (V x,V y,V z ) pseudo-vertex dγdγ d Track Parameters θ : zenith angle φ: azimuth angle (Vx,Vy,Vz): pseudo-vertex coordinates θcθc (x,y,z)

8 4m 2 Scintillator Detector Typical Values 1)No cut: σ= 4.5 ο 2)Total Collected Charge > 10 mips: σ=2.22 ο 3)Total Collected Charge > 25 mips: σ=1.33 ο 4)Total Collected Charge > 30 mips: σ=1.2 ο Atmospheric shower simulation by CORSIKA - muon transportation to the detector DEPTH by GEANT4 - Sea-Top Detector detailed simulation GEANT4_HOU PRELIMINARY Θ rec -Θ true Angular Resolution in Single Shower Reconstruction Single Station: 4 detectors (1m 2 plastic scintillator), 20 m distance between the detectors, three out of four selection trigger Minimum of total collected charge [mip equivalent] zenith angle resolution [degs]

9 dt=0 16m 2 Scintillator Station 19m 5m 1 m 2 Scintillation Counter dt 1 dt 2 dt 3

10 curvature thickness Time Spread (ns) Multi-Station Operation Monte Carlo Studies in Progress Total collected charge [pe] First coming particles

11 Timing vs Pulse Hight Input A Input B Discriminator (1.5 MIP) Trigger Slewing Resolution

12 Time corrections

13 Consistent Estimations Minuit Minimization

14 Detection Efficiency Efficiency Events A hit is considered when there is more than 4 mips deposited charge

15 Muon Propagation μ track km3 Geant Simulation (propagation & Energy Loss) Accepted if muon with E>2TeV goes through km3 Muon Track Reconstruction (A. Tsirigotis talk) Zenith angle < 13 deg

16 Muon Propagation

17 Primary Zenith Angle Resolution Deposited Charge per counter > 4 mips Number of Hits > 10

18 Primary Azimuth and Space angle Resolution Deposited Charge per counter > 4 mips Number of Hits > 10

19 Effective Area ~ 30 showers per day reconstructed at the surface and in the deep sea Deposited Charge per counter > 4 mips Number of Hits > 10

20 Performance Plots

21 Lab Measurements (a) Discriminator (1.5 MIP) Input C Trigger A1 A2 A3 B1 B2 B3 θ Α -θ Β μ=-0.1±0.3 σ=7.6 ± 0.2 Pull Deposited Charge per counter > 4 mips 6 Active counters μ=-0.06±0.05 σ=1.02 ± 0.03 MC -Data  Data ___ M.C. Prediction

22 Lab Measurements (b) Discriminator (1.5 MIP) Input C Trigger A1 A2 A3 B1 B2 B3 Deposited Charge per counter > 4 mips 6 Active counters μ=0.1±0.6 σ=4.5 ± 0.5 θ m -θ tr Pull μ=0.01±0.1 σ=0.9 ± 0.1 MC Prediction GROUP A GROUP B μ=0.3±0.8 σ=5.2 ± 0.8 θ m -θ tr Pull μ=0.02±0.1 σ=0.9 ± 0.1 DATA δθ=4.6 DATA δθ=5.6

23 Charge Time (ns) Charge (in units of mean p.e. charge) At the Detector Center  Data - Monte Carlo Prediction Scintillator A Scintillator B Lead discriminators Inputs Trigger  Data ___ M.C. Prediction

24 Charge parameterization AGASA parameterization (S. Yoshida et al., J Phys. G: Nucl. Part. Phys. 20,651 (1994) Parameters depend on (θ, Ε, primary) “Mean particle density registered by an active counter”

25 Primary Impact determination Muons are distributed around the impact with rms Absolute Position resolution ~ 0.5 m

26 Telescope Resolution Telescope resolution ~ 0.1 deg Surface Area resolution ~ 1 deg Telescope’s resolution measurement Impossible Inter calibration

27 Conclusions The operation of 3 stations (16 counters) for 10 days will provide: The determination of a possible offset with an accuracy ~ 0.05 deg The determination of the absolute position with an accuracy ~ 0.6 m Efficiency vs Energy and Zenith angle… Resolution No!


Download ppt "Antonis Leisos KM3NeT Collaboration Meeting the calibration principle using atmospheric showers the calibration principle using atmospheric showers Monte."

Similar presentations


Ads by Google