Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Apuntes de Tubomáquinas / 2014-2 Ing. Hipólito Rodríguez B2.2.4 Hydropower system design Turbines: Greek mill (c. 100BC) Apuntes de Tubomáquinas / 2014-2.

Similar presentations


Presentation on theme: "1 Apuntes de Tubomáquinas / 2014-2 Ing. Hipólito Rodríguez B2.2.4 Hydropower system design Turbines: Greek mill (c. 100BC) Apuntes de Tubomáquinas / 2014-2."— Presentation transcript:

1 1 Apuntes de Tubomáquinas / 2014-2 Ing. Hipólito Rodríguez B2.2.4 Hydropower system design Turbines: Greek mill (c. 100BC) Apuntes de Tubomáquinas / 2014-2 Ing. Hipólito Rodríguez

2 2 B2.2.4 Hydropower system design Turbines:Mesopotamian Saquia (c. 1200 AD) the Book of Knowledge of Ingenious Mechanical Devices of al-Jahazi

3 3 B2.2.4 Hydropower system design Turbines: Water wheels (c. 1800) 1-50kW

4 4 B2.2.4 Hydropower system design Turbines: Fourneyron’s turbine (1832)

5 5 B2.Hydropower Seminars A206a Read summary of case studies –Nepal –Peru Discussion –What were the good and bad projects –What makes a “good project” –What were the social benefits of the projects? Were these valued? –Who benefits and who loses

6 6 B2.Reservoirs Seminar groups Group 1 (14:00)Group 2 (14:30) Gunjan Dhingra Mike Farrow Hannah Jones Matt Knight Paul Knowles Peter Adams Elizabeth Aldridge Jonathan Bailey Khesraw Bashir Christopher Baxter Richard Buckland Dafydd Caffery Samuel Carter Nedim Dzananovic Philip Hallgarth Neil Harding Martin Hill Karen Hockey Ching Hong Adam Ithier Peter Jordan Jan Jozefowski Rob Morford Chris Swinburn Kate Taylor Celia Way Marie Wells Matt Whitley Eral Kahveci Imra Karimn Martin Kendrick Shua Lii Beth Mcdowall Adil Munir Roger Palmer Anthony Pearson Gareth Pilmoor Ann Ruthven Matthew Scott Ben Sheterline Melanie Sim Nicholas Thompson Daniel Tkotsch Christopher Tompkins Ian Yeung

7 7 B2.2.4 Hydropower system design Turbines: Power conversion

8 8

9 9 v r1 v r2 B2.2.4 Hydropower system design Turbines: Power conversion:Velocity triangles Rotation u1u1 u2u2 v1v1 v2v2 R1R1 R2R2 11 11 11 22

10 10 B2.2.4 Hydropower system design Turbines: Impulse –Pelton wheel –Turgo –Crossflow Reaction –Radial (e.g. Francis) –Axial (e.g. propeller, bulb, Kaplan)

11 11 B2.2.4 Hydropower system design Turbines: Pelton wheel (1889)

12 12 B2.2.4 Hydropower system design Turbines: Pelton wheel

13 13 B2.2.4 Hydropower system design Turbines: Pelton wheel

14 14 B2.2.4 Hydropower system design Turbines: Pelton wheel

15 15 B2.2.4 Hydropower system design Turbines: Pelton wheel Rotation v 1 (jet velocity)= v r1 u1u1 R1R1 u 2 = u 1 v2v2 v r2 R 2 = R 1 

16 16 B2.2.4 Hydropower system design Turbines: Pelton wheel

17 17 B2.2.4 Hydropower system design Turbines: Pelton wheel:Jet 0.94-0.98

18 18 B2.2.4 Hydropower system design Turbines: Pelton wheel

19 19 B2.2.4 Hydropower system design Turbines: Pelton wheel: Multi jet

20 20 B2.2.4 Hydropower system design Turbines: Pelton wheel: Multi jet Higher rotational speed Smaller runner Simple flow control possible Redundancy Can cope with a large range of flows But Needs complex manifold May make control/governing complex

21 21 B2.1.4 Fundamentals of Hydro power Yields and economics: Flow-duration curve 8,500 kWh/m head 4,000 kWh/m head 17,000 kWh/m head

22 22 B2.2.4 Hydropower system design Turbines: Pelton wheel: Sri Lankan

23 23 B2.2.4 Hydropower system design Turbines: Turgo (1904)

24 24 B2.2.4 Hydropower system design Turbines: Turgo

25 25 B2.2.4 Hydropower system design Turbines: Turgo

26 26 B2.2.4 Hydropower system design Turbines: Turgo

27 27 22 B2.2.4 Hydropower system design Turbines: Turgo Rotation v 1 (jet velocity) v r2 v2v2 u 2 = u 1 u1u1 R1R1 R 2 = R 1 11 v r1  1 =20 

28 28 B2.2.4 Hydropower system design Turbines: Turgo: MPPU – based on Nepali Ghatta

29 29 B2.2.4 Hydropower system design Turbines: Crossflow (1941)

30 30 B2.2.4 Hydropower system design Turbines: Crossflow

31 31 B2.2.4 Hydropower system design Turbines: Crossflow: Panama

32 32 B2.2.4 Hydropower system design Turbines: Crossflow

33 33 B2.2.4 Hydropower system design Turbines: Francis (1849)

34 34 B2.2.4 Hydropower system design Turbines: Francis

35 35 B2.2.4 Hydropower system design Turbines: Francis

36 36 B2.2.4 Hydropower system design Turbines: Francis

37 37 B2.2.4 Hydropower system design Turbines: Francis

38 38 v r1 v r2 B2.2.4 Hydropower system design Turbines: Francis Rotation u1u1 u2u2 v1v1 v2v2 R1R1 R 2 = R 1 11 11 11 22

39 39 B2.2.4 Hydropower system design Turbines: Propeller

40 40 B2.2.4 Hydropower system design Turbines: Propeller

41 41 B2.2.4 Hydropower system design Turbines: Propeller R1R1 v2v2 R 2 = R 1 u1u1 u 2 = u 1 v r2 Rotation v1v1

42 42 B2.2.4 Hydropower system design Turbines: Kaplan (1913)

43 43 B2.2.4 Hydropower system design Turbines: Kaplan

44 44 B2.2.4 Hydropower system design Turbines: siting propellers

45 45 B2.2.4 Hydropower system design Turbines: Water current (1980)

46 46 B2.2.4 Hydropower system design Turbines: Water current

47 47 B2.2.4 Hydropower system design Turbines: Characterising turbines

48 48 B2.2.4 Hydropower system design Turbines: Characterising turbines

49 49 B2.2.4 Hydropower system design Turbines: Characterising turbines

50 50 C Q = flow coefficient C H = head coefficient C P = power coefficient Q = discharge N = rotational speed D = diameter g = gravity H = head P = power  = density B2.2.4 Hydropower system design Turbines: Characterising turbines: Dimensionless groups

51 51 N sp = Specific speed C H = head coefficient C P = power coefficient N = rotational speed P = power  = density g = gravity H = head B2.2.4 Hydropower system design Turbines: Characterising turbines: Dimensionless groups:Specific speed

52 52 B2.2.4 Hydropower system design Turbines: Characterising turbines: Specific speed: Dimensional specific speed TypeTypical head RadRevMetricBritish Pelton>300<0.2<0.03<30<10 Francis500-300.25-1.30.04-0.250-25010-60 Kaplan50-42-60.3-1360- 1200 100-300

53 53 B2.2.4 Hydropower system design Turbines: Characterising turbines

54 54 B2.2.4 Hydropower system design Turbines: Characterising turbines

55 55 B2.2.4 Hydropower system design Turbines: Cavitation

56 56 B2.2.4 Hydropower system design Turbines: Cavitation

57 57 B2.2.4 Hydropower system design Turbines: Cavitation

58 58 B2.2.4 Hydropower system design Turbines: L-1 propeller turbine designed for minimal cavitation

59 59 B2.2.4 Hydropower system design Turbines: L-1 propeller turbine designed for minimal cavitation after 25,000 hours

60 60 = Thoma number p a = atmospheric pressure p v = vapour pressure h s = elevation above tailwater H = total head  = density g = gravity B2.2.4 Hydropower system design Turbines: Cavitation: Thoma number

61 61 B2.2.4 Hydropower system design Turbines: Cavitation: Critical Thoma number


Download ppt "1 Apuntes de Tubomáquinas / 2014-2 Ing. Hipólito Rodríguez B2.2.4 Hydropower system design Turbines: Greek mill (c. 100BC) Apuntes de Tubomáquinas / 2014-2."

Similar presentations


Ads by Google