Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National Sun Yat-sen.

Similar presentations


Presentation on theme: "Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National Sun Yat-sen."— Presentation transcript:

1 Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National Sun Yat-sen University 核磁共振光譜與影像導論

2 Polymers Glasses Porous materials Liquid crystals Applications of Solid State NMR

3 Schematic of a typical semicrystalline linear polymer

4 Stereochemical issue in substituted polymers

5 Signature of stereoregularity in the solid state spectrum

6 Static 2D exchange spectrum for polyethyleneoxide (PEO) ExperimentSimulation

7 3D static 13 C exchange spectra of polyethyleneoxide polyvinylacetate

8 Applications Polymers Glasses Porous materials Liquid crystals

9 Static whole-echo 207 Pb NMR spectra in Pb-silicate glasses mol % PbO 66 50.5 31 4000 0 -4000ppm Linewidth ~400 kHz @ 9.4 T —> signals of 6 experiments summed up

10 Sodium silicate glasses BO NBO Na 2 Si 2 O 5 Na 2 Si 3 O 7 Na 2 Si 4 O 9 6000 -600ppm Static 17 O NMR spectra bridging (BO) and non-bridging (NBO) oxygens

11 Structure of glasses (I) BO NBO

12 29 Si NMR spectra for sodium silicate glasses staticMAS Q4Q4 Q 3 + Q 2 0 -100 -200 ppm-60 -80-100 mole % Na 2 O 34 37 41 Q2Q2 Q3Q3

13 Structure of glasses (II) Q4Q4 Q2Q2 Q1Q1 Q3Q3

14 1 H- 29 Si CPMAS intensity as a function of contact time Different sites in a Na 2 Si 4 O 9 glass with 9.1 wt% H 2 O Q2Q3Q4Q2Q3Q4 0 20 40 contact time (ms)

15 Efficiency for ( 1 H  29 Si )-CP CPdecoupling 1H1H1H1H 29 Si Acquisition 

16 29 Si MAS NMR spectra for a CaSi 2 O 5 glass x 8 glass crystal SiO 4 SiO 5 SiO 6 -50 -100 -150 -200 ppm quenched from a 10 GPa pressure melt isotopically enriched high pressure phase normal isotopes

17 11 B MAS NMR spectra for a sodium borate glass 30 15 0ppm data fit data fit R BO 4 NR R slow cooled fast cooled (with 5 mole% Na 2 O)

18 31 P MAS NMR spectra for sodium phosphate glasses mol % Na 2 O 56 53 40 30 15 5 1000 -100ppm Q1Q2Q1Q2 Q3Q3

19 31 P double-quantum NMR spectrum Double-quantum dimension (ppm) 0 -60 0-30 Single-quantum dimension 1-1 1-2 2-1 2-2 Q1Q1 Q2Q2

20 1 H MAS NMR spectrum for a GeO 2 -doped silica glass loaded with H 2 and UV-irradiated after subtraction of intense back- ground signal GeH SiOH + GeOH 12 6 0 -6 ppm Sample contains ~8  10 19 H atoms/cm 3 (corresponding to about 500 ppm of H 2 O) 9.4 T, 10 kHz spinning

21 17 O 3QMAS NMR spectrum for a glass on the NaAlO 2 -SiO 2 join with Si/Al = 0.7 MAS dimension (ppm) Isotropic dimension (ppm) -50 0 50 100 0 -10 -20 -30 -40 -50 Al-O-Al Si-O-Al

22 17 O 3QMAS NMR spectrum for a borosilicate Si-O-Si Si-O-B B-O-B MAS dimension (ppm) Isotropic dimension (ppm) -25 -50 -75 -100 -100 -50 0 50 100

23 11 B-{ 27 Al} CP-HETCOR NMR spectrum BO 4 BO 3 AlO 6 AlO 4 AlO 5 40 20 0 -20 ppm -80 0 80

24 Applications Polymers Glasses Porous materials Liquid crystals

25 Porous materials Sodalite Zeolite A

26 Porous materials FaujasiteCancrinite

27 Porous materials Zeolite ZK-5Zeolite Rho

28 Zeolite framework projections AlPO 4 -5 along [001] AlPO 4 -11 along [100] VPI-5 along [001]

29 High-resolution 29 Si MAS NMR spectra of synthetic Na-X and Na-Y zeolites -80 -90 -100 -110 (Si/Al) = 1.03 1.19 1.35 1.59 1.67 1.87 2.00 2.35 2.56 2.61 2.75 4 3 2 1 0 4 3 2 1 0 n =Si(nAl) lines

30 Possible ordering schemes for zeolite Y Si/Al = 1.67 Si Al Intensity ratios: Si(4Al):Si(3Al):Si(2Al):Si(1Al):Si(0Al)

31 29 Si MAS NMR spectrum of highly siliceous mordenite -110 -112 -114 -116 -118 ppm 2 1 3 Intensities

32 Mordenite structure along [001] T-siteNo. per unit cellNeighbouring sitesMean T-O-T bond angle T116T1, T1, T2, T3150.4° T216T1, T2, T2, T4158.1° T38T1, T1, T3, T4153.9° T48T2, T2, T3, T4152.3°

33 Mordenite structure along [001] T-siteNo. per unit cellNeighbouring sitesMean T-O-T bond angle T116T1, T1, T2, T3150.4° T216T1, T2, T2, T4158.1° T38T1, T1, T3, T4153.9° T48T2, T2, T3, T4152.3° T1/T3/T2+T4 : 3 cross peaks T1/T4/T2+T3 : 2 cross peaks T2/T3/T1+T4 : 2 cross peaks T2/T4/T1+T3 : 3 cross peaks

34 29 Si MAS NMR spectrum of highly siliceous mordenite J-scaled COSY spectrum -110 -112 -114 -116 -118 ppm T1 T3 T2 + T4 T1/T3/T2+T4 : 3 cross peaks T1/T4/T2+T3 : 2 cross peaks T2/T3/T1+T4 : 2 cross peaks T2/T4/T1+T3 : 3 cross peaks

35 29 Si MAS NMR spectra of ultrastabilized and hydrothermally realuminated zeolites 3 2 1 0 Si/Al = 2.56 4.96 4.267.98 2.44 2.702.09 -80 -90 -100 -110 -120 -90 -100 -110 -120 -90 -100 -110 ppm

36 Chemical reactions in zeolites {C} + H 2 OCO + H 2 (water gas reaction) 1000 °C

37 Chemical reactions in zeolites {C} + H 2 OCO + H 2 (water gas reaction) ……. + x O 2 (n-x) CO + n H 2 + x CO 2 (water gas shift) 1000 °C

38 Chemical reactions in zeolites {C} + H 2 OCO + H 2 (water gas reaction) ……. + x O 2 (n-x) CO + n H 2 + x CO 2 (water gas shift) CO + 2 H 2 CH 3 OH(conversion of synthesis gas) 1000 °C catalyst

39 Chemical reactions in zeolites {C} + H 2 OCO + H 2 (water gas reaction) ……. + x O 2 (n-x) CO + n H 2 + x CO 2 (water gas shift) CO + 2 H 2 CH 3 OH(conversion of synthesis gas) CH 3 OHCH 3 OH + CH 3 OCH 3 1000 °C catalyst Zeolites 150 °C

40 Chemical reactions in zeolites {C} + H 2 OCO + H 2 (water gas reaction) ……. + x O 2 (n-x) CO + n H 2 + x CO 2 (water gas shift) CO + 2 H 2 CH 3 OH(conversion of synthesis gas) CH 3 OHCH 3 OH + CH 3 OCH 3 ……..complex mixture of hydrocarbons 1000 °C catalyst Zeolites 150 °C Zeolites 300 °C

41 Chemical reactions in zeolites {C} + H 2 OCO + H 2 (water gas reaction) ……. + x O 2 (n-x) CO + n H 2 + x CO 2 (water gas shift) CO + 2 H 2 CH 3 OH(conversion of synthesis gas) CH 3 OHCH 3 OH + CH 3 OCH 3 ……..complex mixture of hydrocarbons 1000 °C catalyst Zeolites 150 °C Zeolites 300 °C

42 13 C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins 40 30 20 10 0 -10 ppm 0 -5 -10 -15

43 13 C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins 40 30 20 10 0 -10 ppm 0 -5 -10 -15 scalar coupling 1 J CH = 125 Hz a quintet with ratio 1:4:6:4:1 is expected for methane

44 Heteronuclear 2D J-resolved 13 C MAS NMR spectrum 26 24 22 18 17 16 15 -11 -12 ppm 300 200 100 0 Hz -100 -200 -300

45 13 C NMR spin diffusion spectrum of products of methanol conversion over zeolite ZSM-5 2520 15 10 ppm

46 13 C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins 40 30 20 10 0 -10 ppm 0 -5 -10 -15 Methane Ethane Propane Cyclopropane n-Butane Isobutane (n-Pentane) Isopentane n-Hexane n-Heptane

47 Methylated aromatic products 190 185 180140 135 130 125 ppm CO * *** *

48 129 Xe NMR as a sensitive tool for materials 0:reference S:surface collisions Xe:Xe-Xe collisions E:electric field effect M:paramagnetic species

49 129 Xe as a sensitive probe for various zeolites Xe atoms /g 10 20 10 21 60 80100 120140 ppm omega NaY ZK4 K - L ZSM-11 ZSM-5

50 Applications Polymers Glasses Porous materials Liquid crystals

51 Graphitic nanowires Hexa-peri-hexabenzocoronene (HBC)

52 HBC monolayer on HOPG

53 Phase transitions of alkyl substituted HBC

54 Temperature dependence of the one dimensional charge carrier mobility

55 Liquid crystalline (dichotic) behaviour of alkyl substituted HBC‘s R = C 12 H 25 Hexadodecyl-hexa-peri-hexabenzocoronene (HBC-C 12 )

56 Charge carrier mobility in HHTT

57 1 H DQ MAS NMR spectra of HBC-C 12  -deuteratedfully protonated

58

59 Proposed stacking model based on solid state NMR

60 „Graphitic“ stacking

61 Spinning side band simulation in the DQ time domain For an isolated spin pair, using N cycles of the recoupling sequence for both the excitation and reconversion of DQCs, the DQ time domain signal is given by: with Ref.: Graf et al. J. Chem. Phys. 1997, 106, 885  and  are Euler angles relating the PAF of the diploar coupling tensor to the rotor fixed reference frame -> distance information in a rigid system, or indication of mobility:

62 Homonuclear correlation between I = 1 / 2 spins

63 aromatic protons at 8.3 ppm (crystalline phase) aromatic protons at 6.2 ppm (LC phase) aliphatic protons at 1.2 ppm (crystalline phase) fitted dipolar coupling constants DQ spinning side band patterns  R = 35 kHz  R = 10 kHz  R = 35 kHz

64 Effect of additional phenyl spacers R = -C 12 H 25 or -C 6 H 4 -C 12 H 25

65

66

67 Space filling model for HBC-PhC 1

68 X-ray diffraction patterns of the mesophases


Download ppt "Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National Sun Yat-sen."

Similar presentations


Ads by Google