Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to Microprocessors

Similar presentations

Presentation on theme: "Introduction to Microprocessors"— Presentation transcript:

1 Introduction to Microprocessors
From: Wikipedia, the free encyclopedia

2 Microprocessor A microprocessor incorporates most or all of the functions of a central processing unit (CPU) on a single integrated circuit (IC). [1] The first microprocessors emerged in the early 1970s and were used for electronic calculators, using BCD arithmetics on 4-bit words. Other embedded uses of 4 and 8-bit microprocessors, such as terminals, printers, various kinds of automation etc, followed rather quickly. Affordable 8-bit microprocessors with 16-bit addressing also led to the first general purpose microcomputers in the mid-1970s.

3 Microprocessor Die of an Intel 80486DX2 microprocessor (actual size: 12×6.75 mm) in its packaging

4 Central processing unit
A central processing unit (CPU), or sometimes just called processor, is a description of a class of logic machines that can execute computer programs. This broad definition can easily be applied to many early computers that existed long before the term "CPU" ever came into widespread usage. However, the term itself and its initialism have been in use in the computer industry at least since the early 1960s (Weik 1961). The form, design and implementation of CPUs have changed dramatically since the earliest examples, but their fundamental operation has remained much the same.

5 Central processing unit
Early CPUs were custom-designed as a part of a larger, usually one-of-a-kind, computer. However, this costly method of designing custom CPUs for a particular application has largely given way to the development of mass-produced processors that are suited for one or many purposes. This standardization trend generally began in the era of discrete transistor mainframes and minicomputers and has rapidly accelerated with the popularization of the integrated circuit (IC). The IC has allowed increasingly complex CPUs to be designed and manufactured in very small spaces (on the order of millimeters). Both the miniaturization and standardization of CPUs have increased the presence of these digital devices in modern life far beyond the limited application of dedicated computing machines. Modern microprocessors appear in everything from automobiles to cell phones to children's toys.

6 Central processing unit
Prior to the advent of machines that resemble today's CPUs, computers such as the ENIAC had to be physically rewired in order to perform different tasks. These machines are often referred to as "fixed-program computers," since they had to be physically reconfigured in order to run a different program. Since the term "CPU" is generally defined as a software (computer program) execution device, the earliest devices that could rightly be called CPUs came with the advent of the stored-program computer.

7 ... like being inside the computer

8 EDVAC, one of the first electronic stored program computers.

9 ENIAC The idea of a stored-program computer was already present during ENIAC's design, but was initially omitted so the machine could be finished sooner. On June 30, 1945, before ENIAC was even completed, mathematician John von Neumann distributed the paper entitled "First Draft of a Report on the EDVAC." It outlined the design of a stored-program computer that would eventually be completed in August 1949 (von Neumann 1945). EDVAC was designed to perform a certain number of instructions (or operations) of various types. These instructions could be combined to create useful programs for the EDVAC to run. Significantly, the programs written for EDVAC were stored in high-speed computer memory rather than specified by the physical wiring of the computer. This overcame a severe limitation of ENIAC, which was the large amount of time and effort it took to reconfigure the computer to perform a new task. With von Neumann's design, the program, or software, that EDVAC ran could be changed simply by changing the contents of the computer's memory.[1]

10 ENIAC ENIAC, short for Electronic Numerical Integrator And Computer,[1] was the first general-purpose electronic computer. Precisely, it was the first high-speed, purely electronic, Turing-complete, digital computer capable of being reprogrammed to solve a full range of computing problems,[2] since earlier machines had been built with some of these properties. ENIAC was designed and built to calculate artillery firing tables for the U.S. Army's Ballistic Research Laboratory. The contract was signed on June 5, 1943 and Project PX was constructed by the University of Pennsylvania's Moore School of Electrical Engineering from July, It was unveiled on February 14, 1946 at Penn, having cost almost $500,000. ENIAC was shut down on November 9, 1946 for a refurbishment and a memory upgrade, and was transferred to Aberdeen Proving Ground, Maryland in There, on July 29 of that year, it was turned on and would be in continuous operation until 11:45 p.m. on October 2, 1955.

11 Glen Beck (background) and Betty Snyder (foreground) program the ENIAC in BRL building 328. (U.S. Army photo)

12 Programmers Betty Jean Jennings (left) and Fran Bilas (right) operate the ENIAC's main control panel at the Moore School of Electrical Engineering. (U.S. Army photo from the archives of the ARL Technical Library)

13 Cpl. Irwin Goldstein (foreground) sets the switches on one of the ENIAC's function tables at the Moore School of Electrical Engineering. (U.S. Army photo)

14 Microprocessor Processors were for a long period constructed out of small and medium-scale ICs containing the equivalent of a few to a few hundred transistors. The integration of the whole CPU onto a single VLSI chip therefore greatly reduced the cost of processing capacity. From their humble beginnings, continued increases in microprocessor capacity has rendered other forms of computers almost completely obsolete (see history of computing hardware), with one or more microprocessor as processing element in everything from the smallest embedded systems and handheld devices to the largest mainframes and super computers.

15 Microprocessor Three projects arguably delivered a complete microprocessor at about the same time, namely Intel's 4004, the Texas Instruments (TI) TMS 1000, and Garrett AiResearch's Central Air Data Computer (CADC). The 4004 with cover removed (left) and as actually used (right).

16 ARCHITECTURES 8-bit designs 16-bit designs 32-bit designs
64-bit designs in personal computers Multicore designs RISC Special-purpose designs microcontrollers, digital signal processors (DSP) and graphics processing units (GPU).

17 Atmel AVR architecture (purely microcontrollers) EISC
65xx MOS Technology 6502 Western Design Center 65xx ARM family Altera Nios, Nios II Atmel AVR architecture (purely microcontrollers) EISC RCA 1802 (aka RCA COSMAC, CDP1802) DEC Alpha Intel 4004, 4040 8080, 8085 8048, 8051 iAPX 432 i860, i960 Itanium LatticeMico32 M32R architecture MIPS architecture Motorola Motorola 6800 Motorola 6809 Motorola family, ColdFire [[MotoG4, G5

18 OpenCores OpenRISC architecture PA-RISC family
NSC 320xx OpenCores OpenRISC architecture PA-RISC family National Semiconductor SC/MP ("scamp") Signetics 2650 SPARC SuperH family Transmeta Crusoe, Efficeon (VLIW architectures, IA bit Intel x86 emulator) INMOS Transputer x86 architecture Intel 8086, 8088, 80186, (16-bit real mode-only x86 architecture) Intel (16-bit real mode and protected mode x86 architecture) IA bit x86 architecture x bit x86 architecture XAP processor from Cambridge Consultants Xilinx MicroBlaze soft processor PowerPC405 embedded hard processor in Virtex FPGAs Zilog Z80, Z180, eZ80 Z8, eZ8 and others

Download ppt "Introduction to Microprocessors"

Similar presentations

Ads by Google