Download presentation

Presentation is loading. Please wait.

Published byCelina Lynch Modified about 1 year ago

1
CS 140 Lecture 10 Sequential Networks: Implementation Professor CK Cheng CSE Dept. UC San Diego 1

2
Implementation Format and Tool Procedure Excitation Tables Example 2

3
Canonical Form: Mealy and Moore Machines Combinational Logic x(t) y(t) CLK C2 C1 y(t) CLK x(t) C1C2 CLK x(t) y(t) 3

4
Mealy Machine: y i (t) = f i (X(t), S(t)) Moore Machine: y i (t) = f i (S(t)) s i (t+1) = g i (X(t), S(t)) C1C2 CLK x(t) y(t) Mealy Machine C1C2 CLK x(t) y(t) Moore Machine s(t) Canonical Form: Mealy and Moore Machines 4

5
C1C2 CLK x(t) y(t) Sequential Network Implementation: Format and Tool Canonical Form: Mealy & Moore machines State Table Netlist Tool: Excitation Table s(t) D(t) = h(x(t), S(t)) y(t) = f(x(t), S(t)) 5

6
Implementation: Procedure State Table => Excitation Table Given a state table Input PS x Q(t) NS, y we have NS = Q(t+1) = h(x(t),Q(t)) Output y(t) = f(x(t),Q(t)). We want to express D(t), T(t), S(t), R(t), J(t), K(t) as a funciton of inputs X(t) and current state Q(t). We derive the implementation of D, T, S, R, J, K as combinational logic. 6

7
Implementation: Procedure State Table: y(t) = f(Q(t), x(t)) Q(t+1) = h(x(t),Q(t)) Excitation Table: »D(t) = e D (Q(t+1), Q(t)); »T(t) = e T (Q(t+1), Q(t)); »S, R, J, K From 1 & 2, we derive »D(t) = g D (Q(t), x(t))= e D (h(x(t),Q(t)), Q(t)); »T(t) = g T (Q(t), x(t))=e T (h(x(t),Q(t)),Q(t)); »S,R,J,K. Use K-Map to derive optional combinational logic implementation. –T(t) = g T (Q(t), x(t)) –y(t) = f(Q(t), x(t)) 7

8
State table of a JK flip flop: Q(t) Q(t+1) JK Excitation table for a JK F-F : PS NS Q(t) Q(t+1) JK If Q(t) is 1, and Q(t+1) is 0, then JK needs to be 0-. Excitation Table 8

9
Excitation Tables and State Tables PS NS Q(t) Q(t+1) SR Excitation Tables: PS NS Q(t) Q(t+1) T PS SR Q(t) Q(t+1) SR PS T Q(t) Q(t+1) T State Tables: 9

10
PS NS Q(t) Q(t+1) JK Excitation Tables: PS NS Q(t) Q(t+1) D PS JK Q(t) Q(t+1) JK PS D Q(t) Q(t+1) D State Tables: Excitation Tables and State Tables 10

11
Implementation: Example Implement a JK F-F with a T F-F PS JK Q(t) Q(t+1) = h(J(t),K(t),Q(t)) = J(t)Q(t)+K(t)Q(t) JK State Table Q Q’ C1 J K T 11

12
id J(t) 0 1 K(t) Q(t) Q(t+1) T(t) PS NS Q(t) Q(t+1) Excitation Table of T flip-FlopT(t) = Q(t) XOR Q(t+1) T(t) = Q(t) XOR ( J(t)Q’(t) + K’(t)Q(t)) Excitation Table of the Design Example: Implement a JK flip-flip using a T flip-flop T 12

13
Q(t) J K T(J,K,Q): T = K(t)Q(t) + J(t)Q’(t) Q Q’ J K T Example: Implement a JK flip-flip using a T flip-flop 13

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google