Download presentation

Presentation is loading. Please wait.

Published byHugo Westlake Modified over 2 years ago

1
1 A Population Model Structured by Age and Molecular Content of the Cells Marie Doumic Jauffret doumic@dma.ens.fr Work with Jean CLAIRAMBAULT and Benoît PERTHAME Workshop on mathematical methods and modeling of biophysical phenomena – IMPA - Rio de Janeiro, Brazil 30th, August 2007

2
2 Outline Introduction: models of population growth I. Presentation of our model: A. Biological motivation B. Simplification & link with other models II. Resolution of the eigenvalue problem A. A priori estimates B. Existence and unicity III. Asymptotic behaviour

3
3 Introduction: Models of population growth Malthus parameter: Exponential growth Logistic growth (Verhulst): 1. Historical models of population growth -> various ways to complexify this equation: Cf. B. Perthame, Transport Equations in Biology, Birkhäuser 2006.

4
4 Introduction: Models of population growth 2. The age variable McKendrick-Von Foerster equation: Birth rate (division rate) P. Michel, General Relative Entropy in a Non Linear McKendrick Model, AMS proceeding, 2006.

5
5 I.Presentation of our Model: an Age and Molecular-Content Structured Model for the Cell Cycle A. Two Compartments Model P Q Proliferating cellsQuiescent cells L G d1d1 d2d2 B 3 variables: time t, age a, cyclin-content x

6
6 I.A. Presentation of our model – 2 compartments model a) 2 equations : proliferating and quiescent Cf. F. Bekkal-Brikci, J. Clairambault, B. Perthame, Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle, Math. And Comp. Modelling, available on line, july 2007. quiescent cells Proliferating cells=1 Demobilisation DIVISION (=birth) RATE Death rate Recruitment with N(t) =« total population » Death rate

7
7 I.A. Presentation of our model – 2 compartments model b) Initial conditions: for t=0 and a=0 Initial conditions at t=0: Birth condition for a=0: with daughter mother

8
8 Conservation of the number of cells: Conservation of the cyclin-content of the mother: shared in 2 daughter cells: I.A. Presentation of our model – 2 compartments model c) Properties of the birth rates b and B

9
9 I.A. Presentation of our model – 2 compartments model c) Properties of the birth rates b and B Examples: - Uniform division: - Equal division in 2 daughter cells:

10
10 Goal: find out the asymptotic behaviour of the model : Way to do it: Look for a « Malthus parameter » λ such that there exists a solution of type p(t,a,x)=e λt P(a,x),q(t,a,x)=e λt Q(a,x) Goal of our study and steps of the work Eigenvalue linearised problem

11
11 Goal: find out the asymptotic behaviour of the model : the « Malthus parameter » resolution of the eigenvalue linearised problem part II: A. a priori estimates B. Existence and unicity theorems Back to the time-dependent problem part III: A. General Relative Entropy Method Cf. Michel P., Mischler S., Perthame B., General relative entropy inequality: an illustration on growth models, J. Math. Pur. Appl. (2005). B. Back to the non-linear problem C. Numerical validation Goal of our study and steps of the work

12
12 I. Presentation of our model B. Eigenvalue Linearised Model Non-linearity : G(N(t)) simplified in : Simplified in:

13
13 I.B. Presentation of our model – Eigenvalue Linearised Problem a) Link with other models If Γ=Γ(a) and B=B(a) independent of x Integration in x gives for : = Linear McKendrick – Von Foerster equation

14
14 I.B. Presentation of our model – Eigenvalue Linearised Problem a) Link with other models If Γ=Γ(x)>0 and B=B(x) independent of age a Integration in a gives for : Cf. works by P. Michel, B. Perthame, L. Ryzhik, J. Zubelli…

15
15 I.B. Presentation of our model – Eigenvalue Linearised Problem b) Form of Γ a x Γ=0 Γ<0 Γ>0 Ass. 2: Γ(a,0)=0 or N(a,0)=0 Ass. 1: xMxM

16
16 II. Study of the Eigenvalue Linearised Problem Question to solve: Exists a unique (λ 0, N) solution ? A.Estimates – a) Conservation of the number of cells : integrating the equation in a and x gives:

17
17 II.A. Study of the Eigenvalue Linearised Problem - Estimates b) Conservation of the cyclin-content of the mother: integrating the equation multiplied by x gives:

18
18 II.A. Study of the Eigenvalue Linearised Problem - Estimates c ) Limitation of growth according to age a Integrating the equation multiplied by a gives: multiplying by and integrating we find:

19
19 a x XMXM X0X0 II. Resolution of the Eigenvalue Problem B. Method of characteristics Γ=0 Γ<0 Γ>0 Assumption: N=0

20
20 II.B.Resolution of the Eigenvalue Problem – Method of Characteristics Step 1: Reformulation of the problem (b continuous in x) Formula of characteristics gives: Introducing this formula in the boundary condition a=0:

21
21 Step 2: study of the operator : With For ε>0 and λ>0, is positive and compact on C (0,x M ) Apply Krein-Rutman theorem (=Perron-Frobenius in inf. dim.) : Lemma: there exists a unique N λ,ε 0 >0, s.t. Moreover, for λ=0, =2 and for λ=, =0 and is a continuous decreasing function. II.B.Resolution of the Eigenvalue Problem – Method of Characteristics

22
22 we choose the unique λ s.t. =1. Following steps : Step 3. Passage to the limit when ε tends to zero Step 4. N(a,x) is given by N(a=0,x) by the formula of characteristics and must be in L 1 Key assumption: Which can also be formulated as :

23
23 Following steps Step 5. Resolution of the adjoint problem (Fredholm alternative) Step 6. Proof of unicity and of λ 0 >0 (lost when ε 0)

24
24 Theorem: under the preceding assumption (+ some other more technical…), there exists a unique λ 0 >0 and a unique solution N, with for all, of the problem: II.B.Resolution of the Eigenvalue Problem – Method of Characteristics

25
25 Some remarks -B(a,x=0)=0 makes unicity more difficult to prove: supplementary assumptions on b and B are necessary. -The result generalizes easily to the case x in : possibility to model various phenomena influencing the cell cycle: different proteins, DNA content, size… - The proof can be used to solve the cases of pure age- structured or pure size-structured models. II.B.Resolution of the Eigenvalue Problem – Method of Characteristics

26
26 Some remarks -The preceding theorem is only for b(a,x,y) continuous in x. e.g. in the important case of equal mitosis: the proof has to be adapted : reformulation gives: compacity is more difficult to obtain but the main steps remain. II.B.Resolution of the Eigenvalue Problem – Method of Characteristics

27
27 Theorem: Under the same assumptions than for existence and unicity in the eigenvalue problem, we have III. Asymptotic behaviour of the time- dependent problem A. Linearised problem: based on the « General Relative Entropy » principle

28
28 II. Asymptotic Behaviour of the Time-Dependent Problem B. Back to the 2 compartments eigenvalue problem Theorem. For L constant there exists a unique solution (λ, P, Q) and we have the following relation between λ and the eigenvalue λ 0 >0 of the 1-equation model:

29
29 Since G=G(N(t)) we have p=Pe λ[G(N(t))].t Study of the linearised problem in different values of G(N) F. Bekkal-Brikci, J. Clairambault, B. Perthame, Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle, Math. And Comp. Modelling, available on line, july 2007. II. Asymptotic Behaviour of the Time-Dependent Problem B. Back to the 2 compartments problem

30
30 III.B. Asymptotic Behaviour – Two Compartment Problem a) Healthy tissues: (H1) forwe have λ=λ G=0 >0 non-extinction (H2) for we have λ=λ lim <0 no blow-up ; convergence towards a steady state ? P=e λ[G(N(t))].t

31
31 b) Tumour growth: (H3) for we have λ=λ inf >0 unlimited exponential growth (H4) for we have λ=λ inf =0 subpolynomial growth (not robust) P=e λ[G(N(t))].t III.B. Asymptotic Behaviour – Two Compartment Problem Polynomial growth, Log-Log scale Exponential growth, Log scale

32
32 Recall : link between λ and λ 0 : If d 2 =0 and α 2 =0 in the formula we can obtain (H4) and unlimited subpolynomial growth in a « robust »way: III.B. Asymptotic Behaviour – Two Compartment Problem c) Robust subpolynomial growth Robust polynomial growth, Log scale (not affected by small changes in the coefficients)

33
33 Perspectives -compare the model with data and study the inverse problem… cf. B. Perthame and J. Zubelli, On the Inverse Problem for a Size-Structured Population Model, IOP Publishing (2007). -Use and adapt the method to similar models: e.g. to model leukaemia, genetic mutations, several phases models…

Similar presentations

OK

Table of Contents Solving Polynomial Equations – Factoring Method A special property is needed to solve polynomial equations by the method of factoring.

Table of Contents Solving Polynomial Equations – Factoring Method A special property is needed to solve polynomial equations by the method of factoring.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on forensic science laboratory Ppt on water pollution in the world Ppt on accounting standard 14 English ppt on reported speech Ppt on tourism and hospitality A ppt on loch ness monster found Ppt on bond length of hbr Ppt on sports day games Maths ppt on polynomials for class 10 Ppt on event driven programming vs procedural programming