Download presentation

Presentation is loading. Please wait.

Published byFrancesca Richman Modified over 3 years ago

1
Nick McKeown Spring 2012 Lecture 4 Parallelizing an OQ Switch EE384x Packet Switch Architectures

2
Scaling an OQ Switch one output 1 k many outputs 1 k 1 1 1 N N Not so clear. Work conserving if memory b/w >= R(N+1)

3
At most two memory operations per time slot: 1 write and 1 read Parallel OQ Switch May not be work-conserving 1 1 k=3 N=3 A C B 2 Time slot = 1 A5 A6 A7 A5 A6 A7 B5 B6 A8 B5 B6 A8 Time slot = 2 B6 B5 A8 C5 C6 Time slot = 3 Constant size packets

4
Problem How can we design a parallel OQ work- conserving switch from slower parallel memories? Work Conserving Theorem (sufficiency) A parallel output-queued switch is work-conserving with 3N –1 memories, each able to perform at most one memory operation per time slot.

5
Re-stating the Problem 1.There are K cages which can contain an infinite number of pigeons. 2.Assume that time is slotted, and in any one time slot a.At most N pigeons can arrive and at most N can depart. b.At most 1 pigeon can enter or leave a cage via a pigeon hole. c.The time slot at which arriving pigeons will depart is known 3.For any switch What is the minimum K, such that all N pigeons can be immediately placed in a cage when they arrive, and can depart at the right time?

6
Only one packet can enter or leave a memory at time t Intuition for Theorem Only one packet can enter a memory at time t Time = t DT=t+X DT=t Only one packet can enter or leave a memory at any time Memory

7
Proof of Theorem When a packet arrives in a time slot it must choose a memory not chosen by 1.The N – 1 other packets that arrive at that timeslot. 2.The N other packets that depart at that timeslot. 3.The N - 1 other packets that can depart at the same time as this packet departs (in future). Proof By the pigeon-hole principle, the switch can be work- conserving if there are 3N –1 memories, each able to perform at most one memory operation per time slot.

8
Memory A Parallel Shared Memory Switch C A Departing Packets R R Arriving Packets A5 A4 B1 C1 A1 C3 A5 A4 From theorem 1, k = 7 memories don’t suffice.. but 8 memories do Memory 1 K=8 C3 At most one operation – a write or a read per time slot B B3 C1 A1 A3 B1

9
Distributed Shared Memory Switch The central memories are distributed to the line cards and shared. Memory and line cards can be added incrementally. From theorem 1, the switch is work-conserving if we have a total of 3N –1 memories, each able to perform one operation per time slot i.e. a total memory bandwidth of 3NR. Switch Fabric Line Card 1Line Card 2Line Card N R RR Memories

10
Switch bandwidth What switch bandwidth does the DSM switch need in order to be work-conserving? Theorem (sufficiency) A switch bandwidth of 4NR is sufficient for a distributed shared memory switch to be work-conserving. Proof There are a maximum of 3 memory accesses and 1 external line access per time slot.

11
Switch Algorithm What switching algorithm allows the DSM switch to be work-conserving? 1.Shared bus: No algorithm needed. 2.Crossbar switch: Algorithm needed because only permutations are allowed. Theorem An edge coloring algorithm can switch packets for a work-conserving distributed shared memory switch Proof König’s theorem: Any bipartite graph with maximum degree has an edge coloring with colors.

12
Summary - Switches with 100% throughput None 2NR 2NR/kNk Maximal2NR6NR3R2N MWM NR2NR2RNCrossbarIQ None2NR 1BusShared Mem. Switch Algorithm Switch BW Total Mem BW Mem. BW # Mem.Fabric NoneNRN(N+1)R(N+1)RNBusOQ PSM C. Sets4NR2N(N+1)R2R(N+1)/kNkClosPPS - OQ C. Sets4NR 4RN C. Sets6NR3NR3RN Edge Color 4NR3NR3RN Xbar C. Sets3NR 3NR/kkBus C. Sets4NR 4NR/kNk Clos Time Reserve * 3NR6NR3R2N Crossbar PPS DSM Juniper M-series CIOQ Cisco GSR

Similar presentations

OK

Univ. of TehranIntroduction to Computer Network1 An Introduction to Computer Networks University of Tehran Dept. of EE and Computer Engineering By: Dr.

Univ. of TehranIntroduction to Computer Network1 An Introduction to Computer Networks University of Tehran Dept. of EE and Computer Engineering By: Dr.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on multi junction solar cell Ppt on indian textile industries Ppt on natural resources and conservation lesson Ppt on media research tools Ppt on natural and manmade disasters Ppt on blood stain pattern analysis training Ppt on financial services in india Ppt on famous indian entrepreneurs in america Ppt on latest technology in mechanical Ppt on foundation in civil engineering