Download presentation

Presentation is loading. Please wait.

Published byCesar Fletcher Modified over 2 years ago

1
6.1 Vector Spaces-Basic Properties

2
Euclidean n-space Just like we have ordered pairs (n=2), and ordered triples (n=3), we also have ordered n-tuples v=(v 1,v 2,…,v n ). Just like with ordered pairs, the order matters. For two n- tuples to be equal, corresponding entries must be equal. Given and integer n ≥ 1, the set of all n-tuples with real entries is called Euclidean n-space ( n ) 1 - number line 2 - X,Y plane 3 - 3D coordinate system

3
Definitions for n-space v = (v 1,v 2,…,v n ) and u = (u 1,u 2,…,u n ) 1. u + v = (u 1 +v 1,u 2 +v 2,…,u n +v n ) 2. av = (av 1,av 2,…,av n ) 3. 0 = (0,0,…,0) 4. -v = (-v 1,-v 2,…,-v n ) 5. u - v = (u 1 -v 1,u 2 -v 2,…,u n -v n )

4
Properties of n 1. u + v = v + u 2. u + (v + w) = (u + v) + w 3. v + 0 = v 4. v + (-v) = 0 5. a(v+w) = av + aw 6. (a+b) v = av + bv 7. a(bv) = (ab)v 8. 1v = v

5
Vector Space A vector space consists of a non-empty set V of vectors that can be added, multiplied by a scalar, and for which certain axioms hold. For u,v,w in V: Axioms for vector addition A1. If u and v are in V, then u+v is in V. A2. u + v = v + u A3. u + (v + w) = (u + v) + w A4. An element 0 exists s.t. v + 0 = v = 0 + v A5. For each v in V, an element (-v) exists in V such that -v + v = 0 = v + (-v)

6
More... Axioms for scalar multiplication S1. If v is in V, then av is in V for all a in S2. a(v+w) = av + aw S3. (a + b)v = av + bv S4. a(bv) = (ab)v for all v in V S5. 1v = v We say V is closed under vector addition and scalar multiplication, which means that: 1. If we add two vectors in V, we get another vector in V 2. If we multiply a vector V by a scalar, we get a vector in V

7
So... n is a vector space by the definition. Let M m n be the set of all (m x n) matrices w/ real entries, then: The set M m n is a vector space using matrix addition and scalar multiplication. (note that all axioms hold)

8
Example Show that V = {(x,x,y)| x,y are real numbers} is a vector space using the operations of 3 A1-A3, S1-S5 easy to show just writing in component form. Need to show others true: A4: (0,0,0) is in V, so we show it satisfies A4 A5: (-x,-x,-y) is in V, so we show it satisfies A5

9
Example 5 V is set of all ordered pairs (x,y), and define addition in V as in 2. Define scalar mult in V by a(x,y) = (ay,ax). Determine if V is a vector space with these operations. A1-A5 clearly hold (just like 2 ). Test the axioms in S and find that S4 fails.

10
Polynomials Let P be the set of all polynomials and p(x) = a 0 + a 1 x + a 2 x 2 + … + a n x n q(x) = b 0 + b 1 x + b 2 x 2 + … + b n x n Note that addition is defined: p(x) + q(x) = (a 0 +b 0 ) + (a 1 +b 1 )x + … + (a n +b n )x n And scalar mult is defined: cp(x) = ca 0 + (ca 1 )x + … + (ca n )x n P is a vector space -- show that it satisfies the axioms.

11
Functions F[a,b] is the set of all functions on the interval [a,b] (i.e. x, the input value, is in the interval [a,b] Two functions, f and g, are equal if f(x) = g(x) for every x in [a,b]. It is said that f and g have the same action Pointwise addition: (f+g) (x) = f(x) + g(x) Scalar multiplication: (rf)(x) = rf(x) The set F[a,b] is a vector space if pointwise addition and scalar multiplication are the operations. (0 function: 0(x) = 0) (-f)(x)=-f(x) Can show A1,S1, but others for homework

12
Theorem 1-Cancellation u,v,w are vectors in V. If v + u = v + w, then u = w Proof: Given v + u = v + w -v + (v + u) = -v + (v + w) (A5) (-v + v) + u = (-v + v) + w (A3) 0 + u = 0 + w (A5) u = w(A4)

13
Theorem 2 Given u and v in vector space V, x + v = u has only one solution x in V: x = u - v Proof: (Cannot prove like Thm 1 since don’t know x is in V yet.) x = u - v is a solution since: x + v = (u - v) + v = u + (-v + v) = u + 0 = u It is the only solution: assume x 1 was also a solution so: x 1 + v = u, then: x 1 + v = x + v, so x 1 = x by cancellation

14
Theorem 3 Let v be a vector in vector space V, and a be a real number. 1. 0v = 0 2. a0 = 0 3. If av = 0, then either a = 0 or v = 0 4. (-1)v = -v 5. (-a)v = -(av) = a(-v) Proof: 1. 0v + 0v = (0 + 0)v =0v = 0v + 0 so Thm 1 gives 1. 3. If av = 0, we show that if a≠0, then v = 0

15
Theorem 3 (proof continued) 4. -v + v = 0 by A5. Also (-1)v+v=(-1)v+1v=(-1+1)v=0v=0 so (-1)v + v = -v + v so (-1)v= -v

16
Example Given vectors u,v in vector space V, find x,y in V s.t. x-4y = u 2x + 3y = v Can be done just like solving linear systems since we have shown that operations are just like those in linear systems.

Similar presentations

OK

Chapter 3 Vector Spaces. The operations of addition and scalar multiplication are used in many contexts in mathematics. Regardless of the context, however,

Chapter 3 Vector Spaces. The operations of addition and scalar multiplication are used in many contexts in mathematics. Regardless of the context, however,

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on fiscal policy 2012 Ppt on single phase and three phase dual converter Ppt on antenatal care Ppt on two point perspective drawing Liquid crystal on silicon display ppt online Water pollution for kids ppt on batteries Ppt on pricing policy and strategy A ppt on loch ness monster images Ppt on different types of forests in philippines Ppt on bond length trend