# MATLAB MATLAB is a high-level technical computing language and

## Presentation on theme: "MATLAB MATLAB is a high-level technical computing language and"— Presentation transcript:

MATLAB MATLAB is a high-level technical computing language and
interactive environment for algorithm development, data visualization, data analysis and numerical computation.

MATLAB High-level language for technical computing
Development environment for managing code, files, and data Interactive tools for iterative exploration, design, and problem solving Mathematical functions for linear algebra, statistics, Fourier analysis, filtering, optimization, and numerical integration 2-D and 3-D graphics functions for visualizing data Tools for building custom graphical user interfaces Functions for integrating MATLAB based algorithms with external applications and languages, such as C, C++, Fortran, Java, COM, and Microsoft Excel

TASK Find area of surface, which is bounded by the graph of a function f , axis y and line segment with initial point A and end point B. Represent result graphically. A = (0; 0) a B =(3; 0)

Calculation of values of a function
Elementary functions of MATLAB Calculation of values of a function Calculation of value of polynomial function for . 2.*2.*2.*2.*2.*2.*2+3.*2.*2.*2.*2+2.*2.*2-7 Or 2.^7+3.*2.^4+2.^3-7 Or 2*2*2*2*2*2*2+3*2*2*2*2+2*2*2-7 Or 2^7+3*2^4+2^3-7 Or p=[1,0,0,3,0,2,0,-7];polyval(p,2) ans = 177

Notation of functions and operators
Elementary functions of MATLAB Notation of functions and operators Calculate: , , . a1=sqrt(7) a1 = a2=2^8 a2 = 256 Or a2=pow2(8) a2 = 256 a3=7^(1/4) a3 =

Calculate values of following expressions:
z=(2.^3+5.^4).^(1/3) z=8.5862 a=3;b=3;c=4;x=2;y=5; z=(x.^b+y.^c).^(1/a) z=8.5862 a=5;b=5;c=3;x=7;y=2; z=(x.^b+y.^c).^(1/a) z=7.0007 a=7;b=5;c=4;x=2;y=3; z=(x.^b+y.^c).^(1/a) z=1.9647

Calculate values of following expressions:
z=log10(24.589) z=1.3907 z=1.5841 z=log(4.875) z=0.7707 z=log(3.457)./log(5) z=log(3.564)./log(1/3) z=

Trigonometric functions
Calculate , , . u1=cos(3) u1 = u2=asin(0.584) u2 = x=37*pi/180; u3=sin(x) u3 =

Exponential functions
z=0.1494 z=3./exp(3) z=exp(8)+exp(1/4) z=2.9822e+003 z = 2,982.2 z= z=exp(3+1/7)

Conversion from radians to degrees, minutes and seconds of arc
x=–sqrt(3)./2 x=–0.8660 z=acos(x) z=2.6180 y=180*acos(x)./pi y=150

x=0.2458 y=1.3225 y=acos(x) y=180*y./pi y= 0.7709*60 0.2540*60

x= y=2.3287 y=acos(x) y=180*y./pi y= 0.4246*60 0.4760*60

convertx.m y=acos(x); z=180*y./pi; degrees=fix(z); p=(z-degrees)*60; minutes=fix(p); seconds=round((p-minutes)*60); degrees,minutes,seconds x= ;convertx