Download presentation

Presentation is loading. Please wait.

Published byShayne Costin Modified about 1 year ago

1
Christophe Genolini Bernard Desgraupes Bruno Falissard

2

3

4

5

6

7

8
Parametric algorithms Non parametric algorithms

9
Parametric algorithms Example : proc traj Base on likelihood Non parametric algorithms K means (KmL)

10
I ♥ Quebec…

11
Size = 1,84 Small likelihood Big likelihood

12

13
Number of clusters Trajectories shape (linear, polynomial,…) Distributions of variable (poisson, normal…) Maximization of the likelihood

14
Number of clusters Maximization of some criteria

15

16

17
∆

18
∆

19

20
> kml(cld3,4,1,print.traj=TRUE)

21

22

23

24

25
longData <- as.cld(gald()) kml(longData,2:5,10,print.traj=TRUE) choice(longData)

26

27

28

29
C1: partition for V1 C2: partition for V2 C1xC2: partition for joint trajectories? C1 = {small,medium,big} C2 = {blue,red} C1xC2 = {small blue, small red, medium blue, medium red, big blue, big red}

30

31

32

33

34

35

36

37

38
par(mfrow=c(1,2)) a <- c(1,2,1,3,2,3,3,4,5,3,5) b <- c(6,6,6,5,6,6,5,5,4,3,3) plot(a,type="l",ylim=c(0,10),xlab="First variable",ylab="") plot(b,type="l",ylim=c(0,10),xlab="Second variable",ylab="") points3d(1:11,a,b) axes3d(c("x", "y", "z")) title3d(,, "Time","First variable","Second variable") box3d() aspect3d(c(2, 1, 1)) rgl.viewpoint(0, -90, zoom = 1.2)

39
cl <- gald(functionClusters=list(function(t){c(-4,-4)},function(t){c(5,0)},function(t){c(0,5)}),functionNoise = function(t){c(rnorm(1,0,2),rnorm(1,0,2))}) plot3d(cl) kml(cl,3,1,paramKml=parKml(startingCond="randomAll")) plot3d(cl,paramTraj=parTraj(col="clusters"))

40

41
The nominees are: Calinsky & Harabatz Ray & Turie Davies & Bouldin ... The winner is…

42
The nominees are: Calinsky & Harabatz Ray & Turie Davies & Bouldin ... The winner is… Falissard & Genolini (or G & F ?)

43

44
« classic » distance « shape » distance

45

46

47

48

49

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google