Download presentation

Presentation is loading. Please wait.

Published byAlex Coller Modified over 2 years ago

1
To the adaptive multibody gravity assists tours design in Jovian system for the Ganymede Landing. Grushevskii A.

2
**24th International Symphosium on Space Flight Dynamics, May 5-9, 2014**

Keldysh Institute of Applied Mathematics Russian Academy of Sciences Grushevskii A.V., Golubev Yu.F, Koryanov V.V., Tuchin A.G. To the adaptive multibody gravity assist tours design in Jovian system for the Ganymede Landing 24th International Symphosium on Space Flight Dynamics, May 5-9, 2014

3
ESA- JUICE MISSION

4
**ESA- JUICE Mission Debut**

Interplanetary part- Ganymede Flyby- JOI- G&C-Flyby Sequence GOI

5
**Roskosmos part: +Ganymede Landing**

Flexible JOI Data Flexible G&C-Flyby Sequence GOI Ganymede Circular Orbit Landing

6
MaiN Problems -Min Delta V (ballistic scenarios, if it’s possible) -Radiation Doze Accumulation (TILD) -Duration -Min V-infinity relative Ganymede

7
**Roscosmos part: Ganymede Landing. Resonance beginning. Typical scenario**

Moon Orbital period of SC after the satellite flyby rated to satellite’s orbital period Number of rounds after a flyby Ganymede 6 1 5 2 4 3 2.5 ESTK complex of Keldysh IAM RAS Ballistic Center Navigation and Ancillary Information Facility (NAIF) - NASA Refined Flyby Model

8
**Quasi-Singularity of the Radiation Hazard**

9
**Joining to Jovian System After Interplanetary Part**

Time of Jovian sphere of action 2029/06/03 09:25:10 UTC Flyby hyperbola ( J2000) Semimajor axe, km Eccentricity Inclination grad V-Infinity, km/s 4.91 Pericenter Time 2029/08/29 17:20:35 UTC Pericenter altitude 12.5 RJ

10
1 GAM (near Ganymede) Callisto Europa IO Ganymede Time of minimal distance reaching 2030/04/25 12:55:52 Minimal distance km Height of pericenter of flyby hyperbola km Asymptotic velocity Change of velocity relatively to Jupiter Period after flyby of GANYMEDE days Distance in pericenter rated to Jupiter’s radius Eccentricity after flyby Velocity in pericenter after flyby Velocity in apocenter after flyby Vx= , Vy= , Vz= , |V|=

11
2 GAM Time of minimal distance reaching 2030/06/07 11:18:06 Minimal distance km Height of pericenter of flyby hyperbola km Asymptotic velocity Change of velocity relatively to Jupiter Period after flyby of GANYMEDE days Distance in pericenter rated to Jupiter’s radius Eccentricity after flyby Velocity in pericenter after flyby Velocity in apocenter after flyby Vx , Vy= , Vz= , |V|=

12
3 GAM Time of minimal distance reaching 2030/08/18 00:23:08 Minimal distance km Height of pericenter of flyby hyperbola km Asymptotic velocity Change of velocity relatively to Jupiter Period after flyby of GANYMEDE days Distance in pericenter rated to Jupiter’s radius Eccentricity after flyby Velocity in pericenter after flyby Velocity in apocenter after flyby Vx= , Vy= , Vz= , |V|=

13
4 GAM Time of minimal distance reaching 2030/09/15 15:30:37 Minimal distance km Height of pericenter of flyby hyperbola km Asymptotic velocity Change of velocity relatively to Jupiter Period after flyby of GANYMEDE days Distance in pericenter rated to Jupiter’s radius Eccentricity after flyby Velocity in pericenter after flyby Velocity in apocenter after flyby Vx= , Vy= , Vz= , |V|=

14
5 GAM Time of minimal distance reaching 2030/10/07 02:25:05 Minimal distance km Height of pericenter of flyby hyperbola km Asymptotic velocity Change of velocity relatively to Jupiter Period after flyby of GANYMEDE days Distance in pericenter rated to Jupiter’s radius Eccentricity after flyby Velocity in pericenter after flyby Velocity in apocenter after flyby Vx= , Vy= , Vz= , |V|=

15
6 GAM Time of minimal distance reaching 2030/11/12 04:29:38 Minimal distance km Height of pericenter of flyby hyperbola km Asymptotic velocity Change of velocity relatively to Jupiter Period after flyby of GANYMEDE days Distance in pericenter rated to Jupiter’s radius Eccentricity after flyby Velocity in pericenter after flyby Velocity in apocenter after flyby Vx= , Vy= , Vz= , |V|=

16
**Quasi-Singularity of the Radiation Hazard**

17
**Gravity-assist sequence. Effective Type T1**

18
**RADIATION HAZARD PROBLEM (M. Podzolko e.a., SINP MSU Data)**

19
**Typical radiation hazard analysis on the ENDGAME phase**

Dynamics of the radiation accumulation

20
**Typical radiation hazard analysis on the ENDGAME phase**

Dynamics of the radiation accumulation- zoom scale

21
**Dynamics of the radiation accumulation- on one orbit. Quasi-singularity**

Period after flyby of GANYMEDE 42.9 days Distance in pericenter rated to Jupiter’s radius 11.5 Distance in apocenter rated to Jupiter’s radius 98.0

22
**Ti (Tisserand’s Criterion)**

Restricted 3 Body Problem Jacobi Integral J Tisserands Parameter T (see R.Russel, S.Campagnola) “Isoinfine” (“Captivity”)

23
**Tisserand-Poincare graph (N. Strange, J. Sims, K. Kloster, J**

Tisserand-Poincare graph (N.Strange, J.Sims, K.Kloster, J.Longuski axes Rp-T (A.Labunskii, O.Papkov, K.Sukhanov axes Ra-Rp- the same)

24
**TP-strategy(axes Ra-Rp in RJ)**

25
CB-Classic Billiard Duplex Shutting CGB-Classic Gravitational Billiard

26
**Using PHASE BEAM method of Gravity Assists Sequences Determination**

27
**Previous front trees of Tisserand graph for Russian “Laplace” mission**

28
**Previous Tisserand Graph for the Roscosmos “Laplace” mission**

29
Phase Selection We need the criterion of selection of encounters for V-infinity reduction The “Magic” code is: “Ganymede”+”Not Ganymede”+”Ganymede” Or “G”^”C”^…^”C”^”G”

30
**Rebounds+ReRebounds (axes Ra-Rp)**

31
**Real Phase Searching(axes Ra-Rp in RJ)**

Rebounds Rebounds-ReRebounds

32
**“JUICE” by ESA Tisserand-Poincare typical graph**

33
Research basement Orbit correction algorithm preceding spacecraft’s Jovian moons gravity assists Gravity assists refined model ESTK KIAM RAS Ballistic centre complex Navigation and Ancillary Information Facility (NAIF) - NASA ephemeris — will be refined during JUICE by ESA

34
**Fly-by sequence selection strategy**

Lambert problem solution; The phase-beams method; Delta V minimizations; Gravity-assist parameters permanent corrections; Simulations results are presented.

35
**Gravity-assist sequence. Effective Type T1**

36
**Part II of radiation-comfortable tour**

37
**Low-radiation sequence type T2**

38
**Type: Hyper-low-radiation, Expensive Delta V**

39
**«Endgame» (S.Campagnola, R.Russel, 2011)**

40
**Virtual Trajectories Splitting After Swing-by**

41
**Applications for Another Kinds of Flybys**

42
**Callisto & Ganymede assists us to minimize fuel requirements**

Tour design problem lends itself well to optimization schemes Callisto & Ganymede assists us to minimize fuel requirements

45
**Thank you for your attention !**

Similar presentations

OK

Институт прикладной математики им. М.В.Келдыша РАН Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

Институт прикладной математики им. М.В.Келдыша РАН Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on economic order quantity pdf Memory games for kids ppt on batteries Ppt on supply chain management of hyundai motors Ppt on power transmission in automobiles Ppt on summary writing for kids Ppt on self awareness and leadership Ppt on spiritual leadership oswald Ppt on history of prime numbers Download ppt on crop production and management Ppt on different sectors of economy