Presentation is loading. Please wait.

Presentation is loading. Please wait.

GREPE, GRoup for an European Planetary Ephemeris EUROPLANET – 26 th February 2007 A. Fienga (1),(2), J.Laskar (1), H.Manche (1), M.Gastineau (1), B.Levrard.

Similar presentations


Presentation on theme: "GREPE, GRoup for an European Planetary Ephemeris EUROPLANET – 26 th February 2007 A. Fienga (1),(2), J.Laskar (1), H.Manche (1), M.Gastineau (1), B.Levrard."— Presentation transcript:

1 GREPE, GRoup for an European Planetary Ephemeris EUROPLANET – 26 th February 2007 A. Fienga (1),(2), J.Laskar (1), H.Manche (1), M.Gastineau (1), B.Levrard (1), C. Le Poncin-Lafitte (3), S. Bouquillon (4), G. Francou (4), J. Chapront (4), A. Correia (5), I. Cognard (6) (1) IMCCE / Paris Observatory (2) Besançon Observatory (3) Lohrmann Observatory, Dresden, Germany (4) SYRTE, Paris Observatory (5) Universitad de Aveiro, Portugal (6) Pulsar, Orléans University, France Networking Activity

2 JPL DExxx (Newhall et al 1983,… Standish 1998) VSOP : Analytical solution fitted on DE405 VSOP2000: not accurate enough for space data analysis Only accurate, fitted PE freely avaliable Since 1998 (DE405), no official new release Use by JPL navigation teams for interplanetary missions DE405: ICRS official planetary ephemeris DE405 accuracy now ~several 100 m on Mars distances Planetary ephemeris: state-of-art IAA EMPxxx (Pitjeva 1998,… Pitjeva 2006) BDL VSOP (Bretagnon 1982,… Simon et al. 2007) Very similaire to DExxx Fitted to observations but not easily avaliable INPOP (Fienga et al 2006) Short-term and long-term use Fitted to observations

3 Needs for an european planetary ephemeris With the European space missions like MEX, VEX…Galileo, GAIA, Bepi-Colombo Europe needs independant very accurate planetary ephemeris to: prepare (GAIA: 1 mm/s for Earth radial velocity) realize the mission (Bepi-Colombo: ~10 cm /Earth-Mercury distance) analyse the data (for ex, MEX:few meters /Earth-Mars distance)

4 INPOP Planetary ephemeris INPOP06 (Fienga et al. 2006) Numerical integration with extended precision 80b Planets, Asteroids, Moon, Earth Rotation Einstein-Infeld-Hoffman equation of motion INPOP(TCB) and INPOP(TDB) Fit to ~ space and Earth-based data Asteroid masses and densities J2 estimated (β,γ tested) INPOP realisation of TCB ESA ephemeris (GAIA) ESA tracking data (MEX) Intégrateur Numérique Planétaire de l’Observatoire de Paris began in 2003 with J.Laskar et al. Short-term (few centuries) and long-term (few millions years) use

5 INPOP General Aspect – II: The Moon and Moon Libration EIF pertubations of planets, Sun and 300 asteroïds (integrated) Non-spherical bodies  point mass bodies Deformation of extended bodies (tides)  point mass bodies Earth Shape  Moon shape (torque exerted by the Moon ) DE/LE405 : fitted to LLR / INPOP06 Fit to LLR data ( in progress)

6 INPOP General Aspect – III: Earth rotation CIP(03)-INPOP [arcs] INPOP Earth Rotation solution = Integration of the angular momentum Takes into account the Earth tidal deformation does not depend of the Inner Earth modelling Allows long-term integrations

7 General Relativity and INPOP Einstein-Infeld-Hoffman equation of motion Barycentric Celestial reference frame : IAU 2001 BCRS if T eph = TCB Each planetary ephemeris realises its own TCB (Klioner 05) (TCB inpop – TCG) estimated via an iterative process and INPOP fit to observations For ESA missions (GAIA), ( Le Poncin-Lafitte et al., 2006) In INPOP, RG SSB definition is  i  * i r i = 0 and  i  * i dr i /dt + d  * i dt r i = 0 (Fienga et al. 2006)

8 [ ] data set JPL space data US/Russian direct radar Transit data JPL/Observatoire de Paris Astrometric Planetary Data Base INPOP06 Observations PlanetsTypes of ObservationsTime IntervalSOURCES <><> MercuryRadar Goldstone,Arecibo,Evpatoria 1 km VenusRadar Goldstone,Arecibo,Evpatoria 1 km Spacecraft VLBI Magellan 1 mas Spacecraft radarSept 2006 ESA VEX in process… Mars Spacecraft radar JPL Vkg,Pathf,MGS,MO 2 m Spacecraft radar ESA MEX2 m Spacecraft VLBI JPL MGS,MO 1 mas Spacecraft Doppler1980, 1999JPL Vkg, Pathf 1/10 mm/s JupiterSpacecraft VLBI JPL Galileo 10 mas CCD or transit ( ,  ) USNO,Nikolaev,CAMC,Bdx, MPC 500 mas Saturne CCD or transit ( ,  ) USNO,Nikolaev,CAMC,Bdx, MPC 500 mas Uranus CCD or transit ( ,  ) USNO,Nikolaev,CAMC,Bdx, MPC 500 mas Neptune CCD or transit ( ,  ) USNO,Nikolaev,CAMC,Bdx, MPC 500 mas PlutoCCD or transit ( ,  ) USNO,Nikolaev,CAMC,Bdx, MPC 500 mas Original CCD data ESA MEX/VEX

9 INPOP06 adjusted physical parameters Unit DE405 (Standish, 98) DE411 (Standish, 04) EMP04 (Pitjeva 05) DE414 (Standish, 05) INPOP06 (Fienga, et al 06) Mass of Ceres M    Mass of Vesta M    Mass of Pallas M    Mass of Iris M    Mass of Bamberga M    Density of C class   0.12 Density of S class  0.11 Density of M class   Mass of Asteroid ring M  3.55   0.15 Distance of ring UA 3.13  Sun J2 X    0.55 Planet Initial Conditions + INPOP06b: 1  β  , 1  γ 

10 Works in progress… LLR INPOP fit and Moon dynamics Pulsar Timing for EMB orbit fit Analysis of new VEX and MEX Data IMCCE (H. Manche, J.Laskar, B. Levrard), SYRTE – Paris Observatory (S.Bouquillon), Besançon Observatory (A. Fienga), Universitad de Aveiro (A. Correia) Besançon Observatory (A. Fienga), Orléans Univiservity (I. Cognard), SYRTE – Paris Observatory (J.Souchay) ESOC (J. Fertig, T.Morlay), Besançon Observatory (A. Fienga), IMCCE (B. Levrard, H. Manche, J.Laskar), Universitad de Aveiro (A. Correia) RG ,  Sun J2  determinations Dresden Lohrmann Observatory (C.Le Poncin-Lafitte) Kastler Brossel Laboratoty (S. Reynaud ) IAP (L. Blanchet, G. Esposito-Farese)

11 GTEP: Groupe de Travail sur les Ephémerides Planétaires GTEP : working group related to planetary ephemeris login:gtep, pass : inpop06 ½ day meeting / month in Paris Observatory since February 2006 Past topics: LLR data, science with Pulsar timing, GR in time scales, Tides and planetary ephemeris Next meetings: GR tests, IAU resolutions, reference frames Participants: INPOP team + N. Capitaine, F. Mignard, S. Klioner, J. Chapront, S. Bouquillon, I. Cognard … C. Will, P. Wallace…and everybody who wants !

12 GREPE: GRoup for a European Planetary Ephemeris Based on GTEP, Networking Activity : Development of the GTEP activity Exchange of GREPE members Organisation of International Workshops Invitation for international senior researchers Possibility of training and exchange (postdoc grants) Proposed Budget (per year) Exchange missions and workshop : 15 KE Postdoc positions (12 months) : 36 KE

13

14 Planets Types of Observations DE414INPOP06 MercuryRadar [m]   871 VenusRadar [m]   4527 Spacecraft VLBI [mas]  20.6  2 MarsVkg radar [m]   20 MGS Radar [m]   7.5 MEX Radar [m]   6.7 Spacecraft Doppler Vkg [mm/s]   4.4 Spacecraft Doppl MGS [mm/s]   1.2 Spacecraft VLBI [mas]   0.5 JupiterSpacecraft VLBI [mas]24 -1  123  12 CCD or transit ( ,  ) [mas](47  222, 36  198)(23  214, -26  190) Saturne CCD or transit ( ,  ) [mas] 444 (29  280, -1  196)(-28  270, -2  196) Uranus CCD or transit ( ,  ) [mas] 511 (11  440, 13  370)(0.5  351, 4  361) Neptune CCD or transit ( ,  ) [mas] 18 (12  404, 11  438)(-0.4  360, 0.5  350) PlutoCCD or transit ( ,  ) [mas]1256(13  264, 8  252)(0.9  250, -47  190) INPOP06 / DE414 INPOP06: Original dynamical modele Asteroids / all planets 5 Bigs in 3 classes+ Asteroid ring General Ephemeris over [1899: ] DE414 : 64 Asteroids GM fitted + Asteroid ring 236 in 3 classes Mars & Saturn Space missions dedicated [2000:2005.3]

15 The Moon Positions: Comparisons to LE405 Moon-Earth distances [mm] Years + J2000 Differences in positions [mm] Few mm for Moon geocentric distances on LLR data interval

16 MEX (Morley 06) data MEX – INPOP06 + MEX – 410 x MEX – 405  MEX residuals [m] Time interval INPOP DE410DE405 MEX [m] ± ± ± 112.3

17 FIN FIN

18 The Moon Libration: Comparisons to LE405 < 1 mas for the 3 Euler angles / 1 cty Years + J2000

19 MEX (Morley 06) / MGS data MEX – DE414: (11 ± 12) m MGS – DE414: (7 ± 4) m MEX – INPOP: (8 ± 7) m MGS - INPOP: (2.5 ± 7) m

20 MEX (Morley 06) / MGS data MEX – INPOP + MEX – 410 x MEX – 405  MEX residuals [m] Time interval DE414 INPOP DE410DE405 MGS [m] ± ± ± 4.5 MEX [m] ± ± ± ± 112.3

21 The Moon Positions: Comparisons to DE405 Moon-Earth distances [mm] Error in geoc. Moon positions [mm] Few mm for geocentric distances to the Moon on LLR data interval Years + J2000

22 MEX (Morley 06) / MGS data MEX – INPOP + MEX – 410 x MEX – 405  MEX residuals [m]

23 Einstein-Infeld-Hoffman equation of motion BCRF (IAU 2001) β,γ, J2 Asteroids integrated like planets Asteroid Ring perturbations included SSB INPOP General Aspect – I: Planets and Asteroids PPN RG (  =  =1) (Newhall, 1983)

24 The Moon Positions: Comparisons to DE405 Few mm for geocentric distances to the Moon on LLR data interval

25 General Relativity and Planetary ephemeris:Time scales TDB / TCB / TCG Barycentric Celestial reference frame : IAU 2001 BCRS if T eph = TCB Each planetary ephemeris realises its own TCB (Klioner 05) (TCB inpop – TCG) estimated via an iterative process (Soffel et al. 03) TCG-TT= L G x ∆T with L G a defined constant x E,v E : barycentric coord. of geocenter w 0,ext, w i ext : gravitational U induced by by SS bodies TCB-TCG is Ephemeris dependent

26 The Moon Positions: Comparisons to LE405 Moon-Earth distances [mm] Few mm for geocentric distances to the Moon on LLR data interval Years + J2000

27 General Relativity and Planetary ephemeris: Deflection of light (1/c 2 ) development : enough accurate for observations with  > 1  as GAIA is the next step … (Moyer 00)

28 INPOP General Aspect – II: The Moon and Moon Libration EIF pertubations of planets, Sun and 300 asteroïds (integrated) Extended bodies / point mass bodies interactions Earth / Moon, Sun, Venus, Jupiter Moon / Earth, Sun, Venus, Jupiter Sun / Mercury, Venus, …, Pluton Deformation of extended bodies / point mass bodies Earth (Sun, Moon) / Moon, Sun, Venus, Jupiter Moon (Earth, spin) / Earth, Sun, Venus, Jupiter Torque of extended Earth (J 2 ) on extended Moon (J 2,C 22 ) LE405 : fitted to LLR / INPOP06: Not yet fit to LLR data ( in progress)

29 General Relativity and Planetary ephemeris I- Equations of motion (and body rotation) II- Time scales III – Deflection of light in data processing A- PPN tests: β,γ and Sun J2 estimation B- Time scale adjustement Planetary Ephemeris Fit to Observations

30 / (Ptijeva 2006) Very correlated with solar J2 Very sensitive to weighting scheme β, γ Planet Types of Observations INPOP06INPOP06b MercuryRadar [m] -108   860 MarsVkg radar [m] 0.2   20 MGS Radar [m]2.5   7.6 INPOP06 adjusted physical parameters INPOP06b: Optimisation for 1  β  , 1  γ  and J2=2.5 x GAIA, but also planetary ephemeris dependent !!! More accurate data (Mercury, Venus ) ? However,

31 Conclusions and prospectives Not very conclusive determinations of PPN (β, γ) Strong correlations with Sun J2 and fit weight scheme BUT, new very accurate VEX data expected for september 2006 ! INPOP realisation of TCB in progress... Tests on improvement of (β, γ) determinations

32

33 General Relativity and Planetary ephemeris – II In JPL DE, RG SSB definition is  i  * i r i = 0 and  i  * i dr i /dt = 0 with  * i = F(  i,v i,r ij ) In INPOP, RG SSB definition is  i  * i r i = 0 and  i  * i dr i /dt + d  * i dt r i = 0 Very small differences but better consistences In INPOP, Sun is integrated like planets

34 (TCB inpop – TCG) estimated via an iterative process INPOP obs (TDB) INPOP obs (TCB = K.TDB) scaling factor TCG -TT = (IAU 2001) Data Timing TDB TCB inpop -TT Data Timing TCB INPOP obs (TCB inpop )

35 IMCCE / Observatoire de Paris VSOP (Bretagnon et al.) Several Collaborations with CNES and JPL Hipparcos, GAIA IMCCE Former Service des calculs du bureau des longitudes Institut of the Observatoire de Paris Ephemeris (planets, satellites, asteroids, comets...) Several publications (books, almanachs, website...) Since 2003, new development at IMCCE : INPOP A. Fienga, J.Laskar, H.Manche, M.Gastineau

36 MEX and VEX data Since February 2006, MEX / VEX data each 6 months = agreement with ESOC Venus Express (VEX) Launch date: 9 November 2005 Arrival at Venus: April 2006 Duration ~ 5 years Mars Express (MEX) Launch date: 2 June 2003 Arrival at Mars: 4 June 2004 Science start : January 2005 Duration ~ 5 years Last release in September 2006

37 INPOP06 Data Set [ ] data set JPL space data US/Russian direct radar Transit data Original CCD data ESA MEX/VEX JPL/Observatoire de Paris Astrometric Planetary Data Base

38 INPOP06 adjusted physical parameters With β=1, γ=1

39 General Relativity and Planetary ephemeris I- Equations of motion (and body rotation) II- SSB III- Time scales IV – Deflection of light in data processing

40 INPOP06 / DE414 INPOP06: Original dynamical modele Asteroids / all planets 5 Bigs in 3 classes+ Asteroid ring General Ephemeris over [1899: ] DE414 : 64 Asteroids GM fitted + Asteroid ring 236 in 3 classes Mars & Saturn Space missions dedicated [2000:2005.3] With β=1, γ=1 for INPOP06 and DE414

41 Planetary ephemeris: state-of-art

42 MEX (Morley 06) / MGS data MEX – DE414: (11 ± 12) m MGS – DE414: (7 ± 4) m MEX – INPOP: (8 ± 7) m MGS - INPOP: (2.5 ± 7) m Better INPOP extrapolation / DE414

43 MEX (Morley 06) / MGS data Very good dispersion MEX / MGS data DE414 Fit zone: [ :2005.3] INPOP Fit zone:[ : ]

44 First complete and independant (TCB-TCG) or TB-TT determination since (Fairhead et Bretagnon 1990) Travaux en cours - I With (Klioner 06), (TCB-TCG) for each planetary ephemeris (TCB-TCG) INPOP INPOP (TDB) Ci (TDB) INPOP (K.TDB) ~ INPOP(TCB) Ci (K.TDB) K=1/1-L b Ci(TDB) = K inpop Ci(TCB)

45 Travaux en cours - I With (Klioner 06), (TCB-TCG) for each planetary ephemeris (TCB-TCG) INPOP INPOP (TDB) Ci (TDB) INPOP (K.TDB) ~ INPOP(TCB) Ci (K.TDB) K=1/1-L b (Soffel et al. 03) with OBS (TCB) INPOP(TCB) Ci(TDB) = K inpop Ci(TCB)

46 Travaux en cours - II Milliarcsecond pulsar timing First test with and Tempo v1.1.5 DE405 : (0.8e-5  0.866)  s INPOP : (0.7e-5  0.886)  s

47 Travaux en cours - II Milliarcsecond pulsar timing First test with and Tempo v  mas  mas     0.1 mas/an    0.05 mas/an Use of Milliarcsecond pulsar timing for EMB fit

48

49 Conclusion and Perspectives Dynamical modele Asteroids / all planets => impact on Mercury orbit Choice of reference systems: time scale, precession-nutation => impact on Moon orbit & libration Importance of Independant Planetary Ephemeris Observations Not rely only on JPL data => uncertainties on data analysis => corrupted MGS data during 6 months !!! JPL data => JPL modeles MEX = new orbit geometry / MGS

50 Interactions in DE405/ INPOP05 Newtonian pertubations of planets, Sun and 300 asteroïds (integrated) General relativity corrections on Sun and planets Extended bodies - point mass bodies interactions Earth - Moon, Sun, Venus, Jupiter Moon - Earth, Sun, Venus, Jupiter Sun - Mercury, Venus, …, Pluton Deformation of extended bodies - point mass bodies Earth (Sun, Moon) - Moon, Sun, Venus, Jupiter Moon (Earth, spin) - Earth, Sun, Venus, Jupiter Torque of extended Earth (J 2 ) on extended Moon (J 2,C 22 ) DE405 : fitted to LLR / INPOP-05: Not yet fit to LLR data ( in progress) Earth- Moon

51 INPOP-05b / DE411 INPOP-05b: Original dynamical modele Asteroids / all planets 5 Bigs in 3 classes+ Asteroid ring General Ephemeris over [1899:2006] DE414 : 64 Asteroids GM fitted + Asteroid ring 236 in 3 classes Mars & Saturn Space missions dedicated [2000:2004.5]

52 Moon INPOP-05 / DE405 INPOP-05a - DE405

53 Moon INPOP-05b / DE405: Impact of precession-nutation IAU 2000 Precession: William 84 + Nutation IAU 80 (only 18.6 year term) INPOP-05b - DE405

54 MGS dedicated INPOP-05b / DE411 (O-C) in Mars-Earth distances deduced from MGS

55 MGS dedicated INPOP-05b / DE411 Promising for more asteroid GM fit (O-C) in Mars-Earth distances deduced from MGS


Download ppt "GREPE, GRoup for an European Planetary Ephemeris EUROPLANET – 26 th February 2007 A. Fienga (1),(2), J.Laskar (1), H.Manche (1), M.Gastineau (1), B.Levrard."

Similar presentations


Ads by Google